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Abstract 22 

Light expanded clay aggregates (LECA) have been increasingly used as substrate material 23 

for constructed wetlands given their phosphate removal capacity, mechanical strength, 24 

hydraulic conductivity and their plant rooting and biofilm growth supporting structure. 25 

This review summarizes the current literature on LECA-based constructed wetlands. 26 

Removal performances for main wastewater parameters phosphate, nitrogen species, 27 

suspended solids and oxygen demand are tabulated. Both, physical and biological water 28 
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purification processes in LECA wetlands are discussed. Additional emphasis is on design 29 

and layout of LECA wetlands for different types of wastewater, under different climatic 30 

conditions and to improve treatment performance in general. LECA life cycle 31 

considerations include sourcing, production energy demand, reuse and recycling options 32 

for spent wetland substrates, for example as soil amendment. Research and development 33 

opportunities were identified for structural and compositional LECA modification to obtain 34 

tailored substrates for the use in water treatment and specific treatment tasks. Beyond 35 

traditional wastewater contaminants the fate of a wider range of contaminants, including 36 

organic trace contaminants, needs to be investigated as high Fe, Al and Ca oxides content 37 

of LECA substrates provide adsorptive sites that may facilitate further biological 38 

interactions of compounds that are otherwise hard to degrade.   39 

 40 

Keywords:  Constructed wetlands; LECA; pollutants removal; phosphorous; nitrogen; 41 

adsorption. 42 

43 
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1. Introduction  44 

Traditional water treatment strategies employ a combination of physical, chemical and 45 

biological methods and require large investments in both infrastructure and operation  46 

(Goel 2006; Hendricks 2016). Nature-based solutions such as constructed wetlands (CWs) 47 

are considered as a viable alternative to conventional treatment systems. CWs are 48 

artificial wetlands for wastewater treatment, they consist of a flow-through substructure, 49 

saturated with water and are planted with adaptive vegetation (Verhoeven and 50 

Meuleman 1999). CWs can serve for a wide range of wastewater types at a comparable 51 

removal efficiency to conventional treatment, while requiring less investment costs,  52 

energy demand and maintenance (Vymazal 2010).   53 

Similar to natural wetlands, CWs have been recognized for their multiple roles that 54 

combine environmental and societal benefits, including improving water quality, 55 

increasing water storage buffer capacity during draughts and storm events, restoring 56 

wildlife habitats and providing diverse recreational space within the urban landscape 57 

(Thorslund et al., 2017). Since the introduction of the concept more than 50 years ago 58 

(Seidel 1961), the technology has advanced and CWs have been successfully used to treat 59 

an extensive range of domestic, agricultural and industrial wastewater streams under 60 

various climatic conditions (Calheiros et al., 2007; Merlin et al., 2002; Rozema et al., 61 

2016). CWs have been integral part of progressive ecological urban planning for example 62 

-established in decentralised water treatment 63 
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schemes for smaller communities and rural settlements  (Arheimer et al., 2004; Liu et al., 64 

2017). 65 

There are three major types of CWs (Wu et al., 2015a): free surface water flow CWs, 66 

horizontal subsurface flow CWs and vertical subsurface flow CWs (Figure 1). Free surface 67 

water flow CWs closely replicate the natural cleaning processes occurring in natural 68 

wetlands and have been applied for different types of wastewater including those with 69 

high biological oxygen demand (BOD) and solids content (Ghermandi et al., 2007; Vymazal 70 

2013a). Both horizontal and vertical flow CWs are widely used (Luederitz et al., 2001), 71 

while hybrid systems may combine advantages of each type of CW (Vymazal 2010). CWs 72 

range from simple, vegetated soil filtration beds to highly diverse multi-hectare systems 73 

that combine different types of CWs (Dunne et al., 2012; Wu et al., 2015a).  74 

 75 
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2015b). Biofilm forming microbial communities which drive biodegradation in CWs are 90 

influenced by physical and chemical properties of the substrate (Meng et al., 2014). 91 

Substrate supplies adsorption sites for contaminants,  facilitating various chemical 92 

processes taking place within substrate matrix (Calheiros et al., 2009). Therefore, careful 93 

substrate selection is critical for optimized wetland performance. Location and depth of 94 

the substrate varies with the type of wetland. For vertical flow CWs the depth of the 95 

substrate ranges between 50-60 cm (Prochaska and Zouboulis 2009). The top 10-20 cm 96 

facilitate aerobic microbial activity and subsequent biodegradation, while the remaining 97 

40-50 cm contribute to anaerobic processes including nitrogen removal, and phosphorus 98 

adsorption (Tietz et al., 2007). The CW can consist of substrate layers of different granular 99 

sizes that increase towards the bottom drainage layer (Ávila et al., 2015), and may include 100 

an additional organic substrate such as wood mulch ( ) or 101 

biochar (Zhou et al., 2017). In the case of horizontal flow CWs, the effective substrate 102 

depth is between 25-60 cm (Carballeira et al., 2017). Horizontal flow CWs can employ 103 

both mineral and organic substrate materials (Andreo-Martínez et al., 2017), while 104 

multilayer structure is less common compared to vertical flow CWs. Free surface water 105 

flow CWs use 20-30 cm of rooting soil. For all types of CWs, small, round, evenly sized 106 

grains are most commonly used to fill the bed and average substrate diameters range 107 

from 3 to 32 mm (Tilley et al., 2014).  108 

Wetland substrates can be divided into natural and manufactured materials, which also 109 

include recycled and industrial by-products (Ballantine and Tanner 2010; Johansson 110 
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Westholm 2006; Wu et al., 2015a). Natural substrates such as soil, sand, gravel and 111 

marine sediments have been traditionally used as filter materials in CWs. These substrates 112 

are widely available and require little pre-treatment prior to application (Healy et al., 113 

2007). However, clogging, poor adsorption capacity and low hydraulic conductivity are 114 

common problems associated with these substrates (Johansson Westholm 2006). More 115 

recently, both natural inorganic minerals such as anthracite, apatite, bauxite, calcite and 116 

zeolite (Molle et al., 2011; Seo et al., 2008; Stefanakis et al., 2009) and organic materials 117 

such as biochar, rice straw, peat, and wood mulch became established as CW substrates 118 

(Gupta et al., 2015; Kizito et al., 2015; Xiong and Mahmood 2010). Recycled materials and 119 

by-products from mining, metal-making, construction, manufacturing and agriculture have 120 

also been used as substrate materials in CWs. Specifically alum sludge, coal and steel slag, 121 

fly ash, polyethylene plastic, oyster shells, tire chips, and construction waste such as bricks 122 

(Blanco et al., 2016; Chyan et al., 2013; Hu et al., 2012; Shi et al., 2017; Tatoulis et al., 123 

2017). Some substrates have been modified to improve treatment performance, mainly 124 

for better P removal (Ballantine and Tanner 2010; Johansson Westholm 2006), but also for 125 

improved ammonium (Zhang et al., 2013) and heavy metal (Lian et al., 2013) removal. 126 

Recent reviews have compared the role of different substrates on the removal of 127 

nutrients, including P removal of both natural and manufactured substrates (Wang et al., 128 

2020) and summarizing the structural differences and inherent properties of 129 

unconventional substrates such as zeolite, rice husk, alum sludge among many others, and 130 

their capacity for substantial N and organics removal from wastewater under optimized 131 
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operating conditions (Saeed and Sun 2012). Various substrates have been classified based 132 

on their ion-exchanging, P sorbing and electron donating properties (Yang et al., 2018). In 133 

general, substrates rich in mineral oxides of calcium (Ca), aluminum (Al), and iron (Fe) 134 

such as limestone, biotite, muscovite, steel slag, and light weight expanded clays 135 

aggregates (LECA) have high capacities of P and N removal (Johansson Westholm 2006), 136 

while organic substrates such as rice straw, compost, and wood mulches can be utilized by 137 

microbes as electron donors and thus enhance nitrification and denitrification processes 138 

(Cao et al., 2016). Specific studies have focused on substrates with extensive capacity for P 139 

removal such as clay bricks, fly ash, wollastonite, slag material, bauxite, shale, burnt oil 140 

shale, limestone, zeolite and LECA (Drizo et al., 1999; Johansson Westholm 2006; Lima et 141 

al., 2018). 142 

This review focusses on suitability of LECA as a substrate in CWs and summarizes the 143 

current knowledge of LECA application in CWs design for wastewater treatment and its 144 

performance for a broad range of pollutants. The paper further examines the technical 145 

aspects of LECA incorporation into CWs design solutions with a wider attention to the 146 

importance and possibilities of LECA structural modifications enhancing the removal of 147 

different types of pollutants using CW technology. Moreover, the review aims to shed 148 

some light on the environmental concerns of LECA recycling and energy consumption. 149 

 150 
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2. Light Expanded Clay Aggregates (LECA) 151 

2.1  Production, use and composition 152 

LECA-like materials can be traced back to ancient Mediterranean civilizations (Chandra 153 

and Berntsson 2002). LECA is a subtype of light weight aggregates (LWA), a heterogeneous 154 

group of low-density materials used for various civil engineering and construction 155 

purposes (Al-Jabri et al., 2005; Holm and Valsangkar 1993;  et al., 2004; Real et 156 

al., 2016). LECA has been increasingly applied in storm water management schemes and 157 

urban green infrastructure including green roofs and walls, permeable pavements and 158 

thermal insulation concretes (Karami et al., 2018; Molineux et al., 2016; Pradhan et al., 159 

2018; Sailor and Hagos 2011; Sengul et al., 2011). Commercial trademarks marketed 160 

worldwide include Filtralite®, Danish Leca®, LiaporTM, Stalite, Gravelite and Go Green 161 

(Baker et al., 2014). The first use of LECA as CW substrate was reported in  the early 1990s 162 

(Jenssen et al., 1991). LECA is a strong but light aggregate with a water-resistant sintered 163 

ceramic matrix and a near-spherical shape (Cheeseman et al., 2005). LECA has a water 164 

absorption capacity between 5-25% (Bogas et al., 2012; Castro et al., 2011; Nepomuceno 165 

et al., 2018) and the cation exchange capacity of LECA is estimated by 9.5 cmol·kg 1 (Drizo 166 

et al., 1999). Traditionally, clay minerals like montmorillonite or illite are used as a raw 167 

materials for LECA production (Nkansah et al., 2012). Clay minerals are hydrous aluminium 168 

silicates with Fe, Mg and other alkaline and earth alkaline metals at variable amounts 169 

(Murray 2007). The chemical composition of LECA varies with the mineralogy of the raw 170 

clay material used (Shichi and Takagi 2000). More recently, a wider range of natural, 171 
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artificial and recycled additives such as shale, apatite minerals, granite and marble mining 172 

residues, industrial by-products including fly ashes, wastewater sludge and contaminated 173 

soils have been incorporated to produce modified LECA (Ayati et al., 2019; Cheeseman et 174 

al., 2005; Molle et al., 2011). LECA is manufactured by burning wet-formed clay granules 175 

at temperatures ranging from 1000-1300°C. Increased temperatures and burning times 176 

result in higher density and lower porosity product (Moreno-Maroto et al., 2017). During 177 

burning the clay expands rapidly by gas generation through pore water evaporation, 178 

decomposition of carbonates and ferric oxides and combustion of intrinsic organic 179 

compounds and added expansion agents, including mineral oil, sawdust and chopped 180 

straw (Fakhfakh et al., 2007; González-Corrochano et al., 2009) . Due to chemical changes 181 

during burning, the final LECA product has a slightly different chemical composition than 182 

the raw material, lacking hydrated mineral forms and carbon. LECA composition is 183 

generally dominated by 5-6 major constituents; 60-70% SiO2, 15-18% Al2O3, 4-7% Fe2O3, 1-184 

4% MgO, CaO, Na2O, other constituents contributing less than 1% (Table 1).  185 

Table 1 The chemical composition of LECA produced from clay, marine clay, and fabricator sludge. 186 

Reference Sharifnia et al., 2016 Kalhori et al., 2013 Laursen et al., 2006 

LECA raw material 100% clay 100% clay 90% marine clay+ 10% 
semiconductor production 

sludge 

     a b 
SiO2 61.67 64.83 70.7 69.2 

Al2O3 18.51 15.05 15.3 15.6 

Fe2O3 6.14 7.45 4.5 4.42 

MgO 3.97 3.67 1.02 1.03 

 CaO  3.5 2.98 3.8 3.97 

K2O 3.28 2.55 1.39 1.5 

Na2O 1.54 1.1 0.51 0.54 

TiO2 0.65 0.63 0.57 0.6 
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SO3 0.23 0.11 1.5 2.22 

P2O5 0.19 0.13 nd 0.026 

SrO 0.13 - 0.026 0.023 

 - - 0.13 0.17 

L.O.I - 1.37 na na 

MnO - 0.13 0.03 0.027 

CuO - - 0.021 0.016 

F - - nd 0.21 

ZnO - - 0.015 0.014 

ZrO2 - - 0.101 0.053 

BaO - -  0.36 0.31 
  187 

LECA is available as granules (intact) or crushed (Figure 2), geotechnical and construction 188 

applications predominantly use granules, while crushed LECA is used in hydroponics and 189 

water filtration applications (Bahmanpour et al., 2017). The LECA manufacturing process 190 

creates a pellet ranging from <1-32 mm with an average dry bulk density of about 400-600 191 

kg m-³ and a smooth sintered ceramic outer shell that encloses the inner honeycomb 192 

structure (Ardakani and Yazdani 2014; Musa et al., 2016). LECA manufacturing has not 193 

been optimized for applications that require a rather porous and sorbent surface as 194 

desired for CWs e.g. for P removal or as a matrix for biofilm growth. Crushing LECA creates 195 

almost twice the specific surface area and cation exchange capacity compared to 196 

uncrushed LECA (Kalhori et al., 2013; Stevik et al., 1999) by exposing the interior porous 197 

structures.  198 
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Adsorption mechanisms of oxyanions such as phosphate occur via both anion exchange 214 

and ligand exchange (Yaghi and Hartikainen 2013; Yaghi and Hartikainen 2018). Phosphate 215 

is adsorbed as inner-sphere complex with the oxygen atom of phosphate bound directly to 216 

Al and Fe-oxides at the LECA surface (Kwon and Kubicki 2004; Zheng et al., 2012). Inner-217 

sphere complexes are considered strong and mostly irreversible (Yaghi 2015). Ligand 218 

exchange mechanisms occur preferably under acidic conditions, not only due to the 219 

positive surface charge at low pH, but also because of the increasing protonation of the 220 

OH- groups at the mineral oxide surface, leading to the formation of aqua groups that 221 

swap more readily with oxyanions than OH- groups (Yaghi 2015). To achieve high P 222 

removal it has been argued that LECA high in Al is preferable over high Fe, since Al sites 223 

are not redox-sensitive, retaining adsorption capacity at low redox potential, while Fe3+ 224 

might be reduced into Fe2+ which subsequently results in release of Fe bound P (Yaghi and 225 

Hartikainen 2013).  226 

The Ca, Fe, Al, and Mg contents affect the amount of P adsorbed by LECA surfaces (Baker 227 

et al., 2014).  Among these elements, Ca has the strongest correlation with P-sorption 228 

capacity (Zhu et al., 1997). A positive correlation was found between P removal and the 229 

content of both CaO and Ca in substrates (Vohla et al., 2011). Therefore, low P removal in 230 

some LECA-based CWs (Table 2) can be attributed to the low Ca content of the substrate 231 

(Johansson 1997).   232 

The pH is a critical parameter that affects the fate of phosphorous in CWs. The pH values 233 

in LECA beds  can range from 4.0 to 9.5 (Mesquita et al., 2013). Higher pH values have a 234 
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positive effect on P adsorption and precipitation (Vymazal 2007). Previous studies 235 

indicated that an effective P removal in LECA based CWs occurs at high pH value ranging 236 

from 10 to 12 (Zhu et al., 1997). The highest P adsorption (800 mg kg-1) by LECA was 237 

achieved at a highly alkaline pH of 12.3 (Jenssen and Krogstad 2003; Zhu et al., 1997), 238 

while only 72 hours were needed to reach the maximum adsorption capacity. The P 239 

adsorption in CWs involves two steps (Jenssen and Krogstad 2003). The first step is a 240 

short-term transition stage, mostly occurs at low P concentration and is barely affected by 241 

the CW operational regime. The second step leads to long-term binding and continues for 242 

weeks to months depending on substrate properties and P concentration. High P 243 

concentrations can depress pH and eventually the precipitation process of P. For optimal P 244 

adsorption by LECA, a retention time of 4 weeks is suggested (for colder climates) (Jenssen 245 

and Krogstad 2003).   246 

LECA can have an influence on pH values of the water within the CW itself, because of its 247 

high contents of Ca minerals (  et al., 2011). High pH values in the outflow of a 248 

LECA based hybrid CWs were measured with 8.1 to 8.8 in initial 9 months of operation and 249 

7.6 to 7.7 in the three months following (Põldvere et al., 2009). The highly alkaline 250 

conditions can adversely affect the growth of microbial communities which is important 251 

for organic matter and N removal processes (Tietz et al., 2007). 252 

LECA has a finite capacity to adsorb P. Its ceramic matrix makes LECA physically resistant 253 

but it is unlikely that new adsorption sites will emerge or generate in contrast to soil 254 

matrixes (Jenssen and Krogstad 2003). Beyond saturation surface accumulation of both 255 



15 
 

organic matter and sediments may reduce  adsorption capacity (Ballantine and 256 

Tanner 2010). LECA CWs can retain P through precipitation and sedimentation reactions 257 

with Ca-rich particles. The precipitation mechanism is favored at higher pH values or in 258 

presence of dissolved Ca in wastewater which promote P precipitation as Ca- phosphates 259 

especially during the initial stages of the treatment process (Jenssen and Krogstad 2003). 260 

However, when pH values and dissolved oxygen concentrations decrease further P 261 

precipitation is inhibited. Despite the significant contribution of wetlands sediments to P 262 

removal from wastewater, this P sink is often not considered in LECA based CW 263 

(Braskerud 2002; Mendes et al., 2018).  264 

Clays, in general, have good removal capacity for heavy metals due to their high cation 265 

exchange capacity (Ma and Eggleton 1999). This indicates that LECA has potential for 266 

heavy metals removal. LECA has been applied to remove Pb, Cu and Cd from industrial 267 

wastewater (Table 3) (Malakootian et al., 2009) and mining tailings (Scholz and Xu 2002). 268 

Some anionic pharmaceuticals such as MCPA (4-chloro-2-methyphenoxyacetic acid), 269 

oxytetracycline and polyphenols can be removed by electrostatic interactions with LECA at 270 

neutral pH (Dordio and Carvalho 2013; Dordio et al., 2007). In comparison, LECA showed 271 

better adsorptive removal for lipophilic compounds (oxybenzone and triclosan) compared 272 

to a hydrophilic compound (caffeine) (Ferreira et al., 2017) and for polycyclic aromatic 273 

hydrocarbons (PAHs) including phenanthrene, fluoranthene and pyrenes (Nkansah et al., 274 

2012) (Table 3). The high removal rates in previous studies are 275 

exterior and interior surfaces that exhibit hydrophobic character, however, the underlying 276 



16 
 

mechanisms are rather vaguely understood, as factors that provide hydrophobicity to 277 

LECA are not well addressed in the literature. 278 

 279 

Table 3. Removal efficiency for heavy metals and organic contaminants using LECA substrates. 280 

 281 

Contaminant % Removal 
efficiency 

Comments Reference 

Pb 
Cd 
 

93.7 
89.7 

Short contact time ranging from 1 to 2 
hours for Pb and Cd adsorption. 
The removal rate of Cd and Pb gradually 
decreased with increase in contact time. 
Adsorption occurred at pH ranging from 3 
to 10. 
 

Malakootian et al., (2009) 

Pb  
Cu 

96 
87 

The presence of plants had no effect on 
Pb and Cu removal. 
Highest removal capacity observed for 
highly porous media. 

Scholz and Xu (2002) 
 
 

 

Organic contaminants 

Oxytetracycline 
(antibiotic) 

>97 Very high removal efficiency obtained in 
planted beds. 
Short contact time (within 3 days). 
 

Dordio and Carvalho (2013) 
 
 
 
 
 
 
 
 
 

Polyphenols 
 

80 A large proportion was removed after 3 
days of contact time in planted beds. 
 

MCPA (herbicide) 77 High removal obtained in planted beds. 
 

Caffeine (wastewater 
indicator) 
Oxybenzone (sunscreen 
agent) and Triclosan (anti-
bacterial agent)   

19-85 
 
61-97 

LECA showed high removal capacity for 
hydrophilic and lipophilic compounds. 

Ferreira et al., (2017) 
 
 
 
 
 

Polyaromatic hydrocarbons 
(PAHs):  
Phenanthrene 
Fluoranthene  
Pyrene 

 
 
92 
93 
94 

Suggested LECA as alternative method for 
PAHs removal. 

Nkansah et al., (2012) 

 282 

 283 
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2.2.2 Removal of pollutants through biological pathways  284 

The main biological pathways for N removal in CW involve aerobic and anaerobic 285 

microbial metabolism through ammonification, nitrification and denitrification (Vymazal 286 

2007) and both uptake and assimilation by plants and microorganisms (Wu et al., 2011), 287 

while the substrate is a main parameters in determining both location and activities of the 288 

microbial community (Truu et al., 2009). Previous studies have shown a decline in 289 

microbial density in the upper 10 cm of the substrate when porous materials such as sand 290 

and gravel were used as filtration bed (Braeckevelt et al., 2007; Nurk et al., 2005). The 291 

relocation of the microbial biomass into greater depths can be explained by the higher 292 

availability of organic matter and the shelter provided on the substrate surfaces and 293 

within the micropores between LECA grains (Calheiros et al., 2009; Tietz et al., 2007). 294 

LECA  capacity for high N removal has been attributed to its high porosity and large 295 

surface area (Saeed and Sun 2012; Vymazal and Kröpfelová 2009; Yang et al., 2018), which 296 

allows oxygen to penetrate, especially if LECA is installed as an upper layer. 297 

Plant roots in vegetated wetlands provide additional surface area for biofilm formation 298 

and growth, and create deep-reaching aerobic zones (Allen et al., 2002; Brix 1993; 299 

Clairmont et al., 2019; Gagnon et al., 2007; Wu et al., 2001). In vertical flow CWs, large 300 

proportion of the oxygen enters the substrate bed via diffusion, while in horizontal flow, 301 

the oxygen is mostly provided by the plants (Lee et al., 2009; Molle et al., 2006). Decaying 302 

roots provide readily accessible organic matter as additional carbon source and can 303 

remarkably improve denitrification rates (Lu et al., 2009; Luo et al., 2018). Planted LECA 304 
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beds have been reported to have higher N removal capacity due to higher microbial 305 

diversity and density compared to unplanted ones (Almeida et al., 2017;  et al., 306 

2009; Dordio and Carvalho 2013). 307 

P uptake and assimilation by plants are the main biological routes for P removal in CWs 308 

(Kim and Geary 2001). The largest proportion of soluble P is taken up by microphytes and 309 

algae, especially in the early stages of the growing season. P uptake by plants contributes 310 

to a short term removal mostly during growth (Vymazal 2007) and if not removed 311 

decaying plants may lead to re-release of P into the wetland. Organic P which enters the 312 

CW as phospholipids, nucleic acids and sugar phosphates is transformed via the microbial 313 

metabolism. The microbial uptake of P is very fast and accounts for a temporary removal 314 

as microorganisms have a very short turnover rate (Qualls and Richardson 2000). 315 

Biological take-up of P in LECA based CW systems has not been quantified due to the 316 

dominance of P removal through adsorption.  317 

The removal of organic matter i.e. BOD, chemical oxygen demand (COD) and total 318 

suspended solids (TSS) in CWs is driven by microbial degradation and the retention of 319 

these compounds to the substrate bed (Saeed and Sun 2012). LECA substrate has a good 320 

capacity for organic matter removal because of high porosity and specific surface areas 321 

which allow better biofilm adhesion to increase the biodegradation (Table 4). In a hybrid 322 

LECA CW, almost complete removal of BOD (99%) was achieved (Põldvere et al., 2009; 323 

Zaytsev et al., 2007). A high removal of COD (92%) and TSS (80%) was also reported by 324 
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Dordio and Carvalho (2013) in CW mesocosms with more than 60% of the organic matter 325 

removed by sedimentation on the LECA bed.  326 



2
0 

    
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

           

Ta
b

le
 4

. T
h

e 
re

m
o

va
l e

ff
ic

ie
n

cy
 o

f 
LE

C
A

 s
u

b
st

ra
te

s 
in

te
gr

at
ed

 w
it

h
 d

if
fe

re
n

t 
ty

p
es

 o
f 

C
W

s 
fo

r 
N

, P
 a

n
d

 o
rg

an
ic

 c
o

m
p

o
u

n
d

s 
fr

o
m

 d
iv

er
se

 t
yp

es
 o

f 
w

as
te

w
at

er
 

 LE
C

A
/ 

o
th

e
r 

su
b

st
ra

te
s 

 

w
a

st
e

w
a

te
r 

so
u

rc
e

 

C
W

 t
y

p
e

 
P

la
n

te
d

/u
n

p
la

n
te

d
 

T
o

ta
l 

N
 

N
H

4
-N

1
 

N
O

3
-N

2
 

T
o

ta
l 

P
 

T
S

S
3
 

B
O

D
4
 

C
O

D
5
 

H
LR

 
H

R
T

6
 

(d
) 

R
e

fe
re

n
ce

 

 
 

 
 

In
 

O
u

t 
In

 
O

u
t 

In
 

O
u

t 
In

 
O

u
t 

In
 

O
u

t 
In

 
O

u
t 

In
 

O
u

t 
 

 
 

m
g

 l
 1

 
%

 
m

g
 l

 1
 

%
 

m
g

 l
 1

 
%

 
m

g
 l

 1
 

%
 

m
g

 l
 -

1
 

%
 

m
g

 l
 1

 
%

 
m

g
 l

 1
 

%
 

B
o

tt
o

m
 la

ye
r:

 1
0

 
cm

, L
EC

A
 1

0-
2

0
 

m
m

. M
id

d
le

 
la

ye
r:

 2
5

 c
m

, 
LE

C
A

 2
-4

 m
m

. 
To

p
 la

ye
r:

 1
0

 c
m

 
LE

C
A

 3
-8

 m
m

 

o
liv

e 
m

ill
 

w
as

te
w

at
er

 
ve

rt
ic

al
 

p
la

n
te

d
 

 

- 
- 

- 
- 

- 
- 

- 
- 

6
1

6 
9

5
 

- 
- 

2
1

6
0

  
9

2
 

- 
6

  
D

o
rd

io
 a

n
d

 
C

ar
va

lh
o

 
(2

0
1

3
) 

U
n

p
la

n
te

d
 

- 
- 

- 
- 

- 
- 

- 
- 

9
5

  
- 

- 
8

1
  

- 
 

 

B
o

tt
o

m
 la

ye
r:

 1
0

 
cm

, L
EC

A
 1

0-
2

0
 

m
m

. M
id

d
le

 
la

ye
r:

 2
5

 c
m

, 
LE

C
A

 2
-4

 m
m

. 
To

p
 la

ye
r:

 1
0

 c
m

 

sw
in

e 
w

as
te

w
at

er
 

p
la

n
te

d
 

- 
- 

3
9

2 
7

5
.2

 
2

4
 

5
8

.4
 

- 
- 

4
8

0 
8

6
 

- 
- 

1
4

2
0 

8
0

 
- 

9
  

u
n

p
la

n
te

d
  

- 
- 

 
4

7
.4

 
 

5
2

.3
 

- 
- 

 
8

6
 

- 
- 

 
6

8
 

- 



2
1 

 

LE
C

A
 3

-8
  m

m
 

2
0

 c
m

 L
EC

A
 1

3-
1

5
 m

m
 

sy
n

th
et

ic
 

w
as

te
w

at
er

 
se

q
u

en
ci

n
g 

b
at

ch
 m

o
d

e 
 

p
la

n
te

d
 

6
9

  
1

9
 

4
0

 
-3

5 
- 

- 
1

9
  

1
8

 
- 

- 
- 

- 
2

0
3 

5
5

 
- 

4
8

, 7
2

 h
 

Li
m

a 
e

t 
a

l.
, 

(2
0

1
8

) 

u
n

p
la

n
te

d
 

9
 

 
 -

3
2 

 
- 

 
2

5
 

- 
- 

- 
- 

 
4

7
 

- 
 

  

LE
C

A
 

sy
n

th
et

ic
 

d
o

m
es

ti
c 

w
as

te
w

at
er

 

h
o

ri
zo

n
ta

l 
p

la
n

te
d

 
5

0
 

7
0

 
6

 
6

6
 

0
.9

 
5

2
 

8
 

6
1

 
- 

- 
- 

- 
- 

- 
- 

3
 

Ö
ze

n
gi

n
 (

2
0

1
6

) 

 
u

n
p

la
n

te
d

 
6

5
 

5
7

 
0

.9
 

6
6

 
6

7
 

- 
- 

- 
- 

- 
- 

- 
- 

2
-4

, 4
-1

0
, 1

0-
 2

0
 

m
m

 
d

o
m

es
ti

c 
so

u
rc

e
s 

an
d

 f
o

o
d

 
p

ro
ce

ss
in

g 
p

la
n

ts
 

h
yb

ri
d

  

ve
rt

ic
al

 f
ill

ed
 

w
it

h
 c

ru
sh

ed
 

lim
es

to
n

e 
an

d
 a

 
h

o
ri

zo
n

ta
l f

ill
ed

 
w

it
h

 L
EC

A
 

u
n

p
la

n
te

d
 

- 
8

1
 

- 
7

9
 

- 
- 

- 
6

7
 

- 
- 

- 
9

9
 

- 
- 

0
.2

-0
.7

3
 m

3  
d

-1
 

- 
Za

yt
se

v 
e

t 
a

l.
, 

(2
0

0
7

) 

    

Li
m

es
to

n
e 

LE
C

A
 

- 
8

2
 

- 
8

3
 

- 
- 

- 
6

0
 

 
 

 
9

9
 

- 
 

 

LE
C

A
 2

-4
, 4

-1
0

, 
1

0
- 

2
0

 m
m

; 
lim

es
to

n
e

 

se
co

n
d

ar
y 

tr
ea

tm
en

t 
o

f 
d

o
m

es
ti

c 
w

as
te

w
at

er
 

h
yb

ri
d

  
u

n
p

la
n

te
d

 
7

2
 

4
7

 
- 

- 
- 

- 
2

0
 

6
6

 
1

3
2 

9
4

 
4

0
5 

8
2

 
7

4
5 

6
4

 
5

2
 m

m
 d

 
6

 
P

õ
ld

ve
re

 e
t 

a
l.

, 
(2

0
0

9
) 

  

2
4

 m
m

 L
EC

A
 

se
co

n
d

ar
y 

tr
ea

tm
en

t 
o

f 
d

o
m

es
ti

c 
w

as
te

w
at

er
 

b
at

ch
 m

o
d

e 
u

n
p

la
n

te
d

 
5

4
 

8
2

 
- 

- 
- 

- 
6

.6
 

4
8

 
3

3
 

8
2

 
1

3
5 

9
9

 
2

2
4 

7
0

 
5

9
 m

m
 d

 
4

 
P

õ
ld

ve
re

 e
t 

a
l.

, 
(2

0
0

9
) 

  

FA
SS

TT
 w

it
h

 
LE

C
A

 a
n

d
 g

ra
ve

l 

  

ar
ti

fi
ci

al
 

w
as

te
w

at
er

 
ve

rt
ic

al
 

p
la

n
te

d
  

- 
5

9
 

- 
9

9
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

4
.6

 m
m

 d
 

7
 

 e
t 

a
l.

, (
2

0
1

1
) 

 
u

n
p

la
n

te
d

  
- 

4
6

 
- 

6
1

6
6 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

4
 t

o
 8

 m
m

 
d

o
m

es
ti

c 
w

as
te

w
at

er
 

h
o

ri
zo

n
ta

l 
u

n
p

la
n

te
d

 
- 

- 
- 

6
1

-9
1 

- 
1

0
0 

- 
- 

- 
- 

- 
- 

- 
6

4
-9

4 
3

.5
 c

m
 d

-1
 

A
lb

u
q

u
er

q
u

e 
e

t 
a

l.
, (

2
0

0
9

) 

 

2
-4

 m
m

 
p

re
tr

ea
te

d
 

d
o

m
es

ti
c 

w
as

te
w

at
er

 

h
o

ri
zo

n
ta

l 
u

n
p

la
n

te
d

 
- 

- 
- 

- 
- 

8
3

 
- 

- 
- 

- 
- 

6
0

 
- 

- 
- 

1
-4

,7
 

N
u

rk
 e

t 
a

l.
, 

(2
0

0
9

) 

Fi
lt

ra
lit

e®
 4

-8
 

sy
n

th
et

ic
 

h
o

ri
zo

n
ta

l 
p

la
n

te
d

 
- 

- 
3

6
.3

 
5

9
.3

 
- 

- 
- 

- 
- 

- 
- 

- 
3

1
5

.9
  

7
4

  
3

.6
 c

m
 d

-1
 

6
 

M
es

q
u

it
a 

e
t 



2
2 

 *k
g 

h
a

1  d
 

 
3

2
8

 

m
m

 
w

as
te

w
at

er
 

u
n

p
la

n
te

d
  

- 
- 

2
6

.7
 

3
3

.9
 

- 
- 

- 
- 

- 
- 

- 
- 

3
1

1
.2

 
3

8
 

a
l.

, (
2

0
1

3
) 

 

LE
C

A
 1

0
/2

0 
sy

n
th

et
ic

 
w

as
te

w
at

er
 

ve
rt

ic
al

 
p

la
n

te
d

 
- 

- 
- 

8
3

 m
g 

l-1
 

6
0

 
- 

- 
- 

- 
- 

5
3

0
0 

- 
8

2
- 

9
4

 m
g 

l -1
 

- 
1

4
8

 t
o

 4
7

3
 L

 
m

d
 

- 
A

lm
ei

d
a 

e
t 

a
l.

, 
(2

0
1

7
) 

 

Fi
lt

ra
lit

e®
 a

n
d

 
gr

av
el

 
ta

n
n

er
y 

w
as

te
w

at
er

 
h

o
ri

zo
n

ta
l 

p
la

n
te

d
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

*1
8

0
0

  
*6

5
2

  
*3

8
4

9
  

*1
8

6
9

  
1

8
, 8

 a
n

d
 6

 
cm

 d
 

- 
C

al
h

ei
ro

s 
e

t 

a
l.

, (
2

0
0

8
) 

LE
C

A
 1

0
/2

0
 m

m
 

d
o

m
es

ti
c 

w
as

te
w

at
er

  
h

yb
ri

d
 

co
n

st
ru

ct
ed

 
w

et
la

n
d

s 

u
n

p
la

n
te

d
  

3
6

.1
 

6
3

 
2

2
.9

 
7

7
 

 
 

1
.2

 
8

9
 

1
1

.8
 

7
8

 
1

9
 

9
1

 
 

 
7

.4
 m

3 
d

 t
o

 
1

7
.7

 m
3  d

 
 

Ö
ö

ve
l e

t 
a

l.
, 

(2
0

0
7

) 

 

LE
C

A
 g

ra
n

u
le

s 
an

d
 p

o
w

d
er

 
d

ai
ry

 in
d

u
st

ri
al

 
w

as
te

w
at

er
 

 
u

n
p

la
n

te
d

 
 

 
 

 
 

4
4

.4
 

 
6

4
.2

 
5

7
0 

6
0

 
1

2
2

0 
6

8
.4

 
2

2
0

0 
6

5
.9

 
 

2
0

 -
1

20
 

h
 

B
ah

m
an

p
o

u
r 

e
t 

a
l.

, (
2

0
1

7
) 



23 
 

The sedimentation of the organic matter occurs mostly near the CW inlet (Caselles-Osorio 329 

et al., 2007). Organic matter accumulation is strongly correlated with organic loading rates 330 

(Meng et al., 2015). The high average removal of both BOD (91%) and TSS (78%) in a 331 

vertical flow CW was attributed to the efficient mineralization of organic matter (Öövel et 332 

al., 2007). The removal of BOD, COD and TSS was found to be affected by the vegetation 333 

type and the creation of aerobic zones within the rhizosphere which positively affected 334 

microbial density and metabolism (Lima et al., 2018). 335 

 336 

2.2.3 Pathogens removal 337 

CWs have been increasingly adopted for wastewater reuse schemes, therefore pathogen 338 

removal has become a central treatment goal that determines wetland design and 339 

operation (Barbagallo et al., 2010; Masi et al., 2007).  340 

CWs provide a number of biological, physical and chemical removal mechanisms for 341 

pathogens which mimic processes occurring in natural wetlands (Kadlec and Wallace 342 

2008). driven by a combination of sedimentation and filtration, adsorption, predation, 343 

photoinactivation, natural die-off as well as biocidal effect of root exudates or 344 

internalization into plant tissue (Alufasi et al., 2017; Boutilier et al., 2009; Wand et al., 345 

2007; Wenk et al., 2019; Wu et al., 2016). Filter media in CWs contribute mostly to 346 

physiochemical pathogen removal mechanisms such as filtration and adsorption. Fine 347 

granular substrates trap microorganisms and increases their retention time by enhancing 348 

removal through natural-die off (Vacca et al., 2005). Adsorption of pathogens was found 349 
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to be particularly effective for substrates with positive surface charge (Rzhepishevska et 350 

al., 2013). Both chemical composition and physical substrate properties, for example 351 

porosity, affect the microbial composition and biofilm growth and contribute to pathogen 352 

predation and adhesion (Long et al., 2016; Meng et al., 2014). However, the link between 353 

substrate properties, predation and microbial composition in CWs is currently not fully 354 

understood (Lee et al., 2010; Mayes et al., 2009). CWs for primary and secondary 355 

wastewater treatment operate at average influent E. coli concentrations of 105-108 colony 356 

forming units per 100 mL (cfu/100mL) for domestic wastewater (Headley et al., 2013) and 357 

up to 1011 cfu/100mL for fecal coliforms in slaughterhouse wastewater (Rivera et al., 358 

1997). The typical removal rates of fecal microorganism observed in CWs range from 1-3 359 

log units (Abou-Elela et al., 2013; Headley et al., 2013; Molleda et al., 2008). In terms of 360 

water quality standards for water reuse, the free water surface systems located in tropical 361 

or subtropical climates are capable of producing final effluent with fecal-coliform 362 

concentration as low as 100 cfu/100 mL (Greenway 2005), while in temperate climates, 363 

the effluent could be consistently maintained around 1000 cfu/100 mL (Vivant et al., 364 

2016). Subsurface flow systems may achieve effluent concentration below 1000 365 

cfu/100ml, particularly when employed as tertiary treatment step (Adrados et al., 2018; 366 

Andreo-Martínez et al., 2017). Nevertheless, many CWs exhibit high variability in effluent 367 

pathogen concentrations, and further research is needed to improve design towards a 368 

more consistent removal performance (Jasper et al., 2013; Wenk et al., 2019). 369 
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Due to the coarse granular size (5-20 mm), the water in LECA filtration beds has a 370 

relatively low residence time in comparison with sand beds, therefore bacterial adhesion 371 

mechanisms may not be very effective (Ausland et al., 2002). Similarly, large granular size 372 

also excludes both filtration and straining from being an important removal mechanism in 373 

LECA-dominated systems (Díaz et al., 2010). On the other hand, LECA  porous surface 374 

enhances biofilm growth and subsequent bio-clogging, which facilitates effective bacteria 375 

immobilization (Lianfang et al., 2009). High cation exchange capacity of LECA could be also 376 

beneficial for bacterial removal since it enhances adhesion (Stevik et al., 1999). 377 

Additionally, clay minerals in LECA, may alter i.e. metabolic pathways of biofilm 378 

microorganisms encapsulating the granule through increase of cell division in E. coli in the 379 

presence of kaolinite (Cuadros 2017). As a proven soilless plant growing substrate 380 

(Pradhan et al., 2018), LECA may facilitate pathogen removal through root biofilm 381 

attachment (VanKempen-Fryling and Camper 2017) and possibly plant exudates (Alufasi et 382 

al., 2017). 383 

Consistent E. coli removal of 1.5 log-units was reported for a LECA-based horizontal flow 384 

polishing CWs  after a prior filtration step, and the removal performance was similar to 385 

referenced gravel systems (Verlicchi et al., 2009). Removal rates of up to 3 log for E. coli 386 

and total coliforms were reported in horizontal flow LECA CW (Calheiros et al., 2015). 387 

Integration of LECA-based CW with preceding septic tanks may eliminate the 388 

dissemination of human parasitic helminth eggs (Paruch 2010). LECA upflow biofilters 389 

designed as unplanted subsurface CW, showed full removal of somatic coliphages which 390 



26 
 

was attributed to the extensive attraction of negatively charged viruses onto the positively 391 

charged LECA surface (Heistad et al., 2006). Due to the potential to reuse LECA as soil 392 

enhancer in agriculture, sanitation safety issues have been investigated. E. coli 393 

contamination of LECA from a horizontal flow CW persisted for more than 14 months after 394 

the last contact with wastewater (Paruch 2011). However, despite the long survival time, 395 

E. coli concentrations below 2.5 103 cfu/g of dried substrate, allowed reuse for agricultural 396 

applications based on regulatory requirements (Paruch et al., 2007). Survival of coliform 397 

bacteria on LECA has been tested to assess the health hazards related to the use of 398 

vertical flow CW in densely populated areas ( ). When exposed 399 

to atmospheric conditions as a top filtration layer in vertical flow CWs, LECA showed 400 

slower inactivation rates of coliforms (k6h=0.36h-1, k12h=0.25h-1) in comparison to gravel or 401 

slag but faster inactivation compared to organic substrates such as bark and charcoal. 402 

 403 

2.2.4 Modified LECA materials  404 

Sorption in CWs is a finite process, that requires periodic exchange of the wetland 405 

substrate (Arias and Brix 2005; Drizo et al., 2002). Efforts to extend CW sorption 406 

performance have been focusing on substrates with improved P removal, CW 407 

management including hydraulic operation practices and both ex-situ and in-situ substrate 408 

treatment  (De la Varga et al., 2013; Knowles et al., 2011; Lianfang et al., 2009; Nivala and 409 

Rousseau 2009; Pedescoll et al., 2009). 410 
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LECA can be improved through changing its mineral composition or altering its surface 411 

charges via coating or additives (Table 2). Coating LECA with Al, Fe or Mg oxides, has 412 

indicated a positive effect on P, As and pharmaceutical removal, respectively (Haque et 413 

al., 2008; Kalhori et al., 2017; Yaghi and Hartikainen 2013; Yaghi and Hartikainen 2018). 414 

Lime had a positive effect on P adsorption capacity (Johansson 1997). Mixing raw 415 

materials with fly ash and dolomite was found to enhance P and N removal capacity, 416 

hydraulic conductivity, and porosity (  et al., 2011; Jenssen and Krogstad 2003). 417 

Adding of sodium carbonate (Na2CO3), quartz (SiO2), hematite (Fe2O3) or elemental iron 418 

(Fe) at 2-10 wt% into the raw clay increased LECA density, porosity and crushing strength 419 

(Bernhardt et al., 2014), while added quartz sand altered particle size distribution and the 420 

internal structure of the LECA by refining gas release during the expansion process 421 

(Fakhfakh et al., 2007). 422 

Bioaugmentation has been investigated to enhance denitrification and pollutants removal 423 

in LECA based CWs. The studies argued that LECA is a sterile substrate given its high 424 

temperature manufacturing process, while the microbes received by the influent provide 425 

insufficient capability to evolve an efficient treatment process. Introducing an already 426 

adapted microbial culture to a newly established CWs could positively affect performance 427 

(Nurk et al., 2009; Zaytsev et al., 2011), leading to a faster achievement of treatment 428 

goals. Augmentation of white-rot fungus Lentinula edodes to inoculate LECA and other 429 

substrates including cork and straw and coat pine enhanced pesticide degradation by 430 

almost 50% (Pinto et al., 2016). Bioaugmentation has been assessed for many years for 431 
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wastewater treatment applications. However, the impact on treatment performance is 432 

rather difficult to predict compared to the earlier mentioned chemical and physical 433 

modification strategies (Herrero and Stuckey 2015).434 
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oxygen conditions (  et al., 2011). Multilayers can be exclusively composed of LECA 455 

granules of different grain sizes or incorporate different types of substrates (  et al., 456 

2011; Calheiros et al., 2009). Horizontal positioning of different substrate layers is variable. 457 

LECA has been mostly used as the upper layer when applied with other substrates to remove 458 

suspended solids and promote the growth of nitrifying microorganisms while providing aeration 459 

(Almeida et al., 2017). On the other hand, installing LECA as a bottom layer substrate has a 460 

positive effect on the  hydraulic conductivity and protects the system against clogging (Suliman 461 

et al., 2006). Layer arrangements uniformity and grain size distribution within each layer are 462 

also critical for adequate hydraulic conditions to minimize clogging issues (Brix et al., 2001). The 463 

grain sizes used in LECA beds can range from smaller 1 mm (powdery form) to 10/20 mm, sizes 464 

of 2/4, 3/8, 4/10 and 13/15 mm have also been applied for different types of CWs (See table 4). 465 

Different depths of LECA layers were tested to compare performance with thicknesses ranging 466 

from 12 cm to 150 cm in lab trials using columns or mesocosms with narrow volumes e.g. 0.25 467 

m2 (Almeida et al., 2017;  et al., 2011; Nurk et al., 2009; Özengin 2016). LECA layer 468 

depths ranging from 20-90 cm have been used in a three layer hybrid CW of an area of 216 m2 469 

for domestic wastewater treatment (Öövel et al., 2007). For the vertical flow section of this 470 

wetland a layer of 50 cm of coarser granules 10-20 mm was used as bottom layer covered by 30 471 

cm of finer 2-4 mm granule to ensure oxygen transport. The vertical bed was followed by a 472 

horizontal subsurface flow filter (90 cm in depth), filled with 2-4 mm LECA granules. Installing 473 

multiple layers of LECA with coarser granules ranging from 10-20 mm can maintain a good 474 

hydraulic conductivity (Põldvere et al., 2009).  475 
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Constructed wetlands have been used for the treatment of a wide range of different types of 476 

water including domestic, agricultural and industrial sources (Vymazal 2009). For example, dairy 477 

farm and aquaculture effluent can be high in COD, proteins, N species and phosphate (Dauda et 478 

al., 2019; Justino et al., 2016; Nagarajan et al., 2019), and greenhouse effluent is usually high in 479 

nitrate (Prystay and Lo 2001). The composition of domestic wastewater is usually more similar 480 

across different locations (Tran et al., 2015). Typical values of main wastewater parameters to 481 

size CWs were proposed by Kadlec and Wallace (2008): BOD 220 mg l-1; TSS 500 mg l-1; TN 40 482 

mg l-1; and P 8 mg l-1. 483 

Physicochemical properties of LECA (Figure 4) make it suitable for application in domestic 484 

wastewater treatment, targeting bioavailable N species, organic matter and P (Albuquerque et 485 

al., 2009; Lu et al., 2016; Meng et al., 2015; Özengin 2016). For this type of wastewater LECA 486 

containing CWs have achieved a maximum reduction up to 99% BOD, 94% TSS, 83-99% 487 

ammonium and 89% P (see Table 4). Organic matter removal in LECA based CWs is significant 488 

for all types of wastewater. LECA has shown a relatively good capacity for P removal from 489 

domestic and food processing wastewaters with values ranging from 60% to 67.3% (Özengin 490 

2016; Põldvere et al., 2009; Zaytsev et al., 2007). 491 
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(2-4 mm) can minimize the clogging problem resulting from the accumulation of organic matter 506 

(Dordio and Carvalho 2013).  507 

 508 

3.2  Hydraulic loading rate and hydraulic retention time 509 

The hydraulic conditions such as loading rate and retention time are vital factors determining 510 

the treatment process in CWs (Ghosh and Gopal 2010; Jing et al., 2002; Persson et al., 1999). 511 

The hydraulic loading rate should be balanced with the expected oxygen depletion along the 512 

wetland (Liu et al., 2016). Generally, low hydraulic loading rates and increasing hydraulic 513 

retention times lead to greater nutrient removal efficiency (Almeida et al., 2017), whereas 514 

organic overloading results in hydraulic dysfunctions via clogging (Knowles et al., 2011). 515 

Herrmann et al., (2013) found that a loading rate of 100 L m 2 d 1 increased the average P 516 

binding capacity of LECA wastewater filters to 1.1 g kg 1 at residence times ranging from 5 to 15 517 

min. High removal capacity of P in LECA beds is attributed to the hydraulic conductivity and the 518 

adaptability of LECA to changing hydraulic loads (Öövel et al., 2007). Effluent recirculation 519 

enhances nitrification processes through increasing both the contact time of wastewater with 520 

CW biofilms and the supply of oxygen and organic matter into the wetland (Saeed and Sun 521 

2012). Effluent recirculation has been tested for a hybrid LECA CWs, it was found that  high 522 

recirculation rates of up to 300% in a hybrid CW can increase removal efficiency for BOD, TSS, 523 

total N (Table 4) (Põldvere et al., 2009; Zaytsev et al., 2007). A hydraulic loading rate of 239 ± 7 524 

L m 2d 1 at a hydraulic retention time of 140 min was found to increase nitrate removal by 525 

maximum 66%, any further increase in hydraulic loading rate was found to have an opposite 526 

result on nitrate removal rate (Almeida et al., 2017). Dordio and Carvalho (2013) indicated that 527 
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LECA adsorption capacity in planted beds was most effective after 6 days for TSS (95.3%), and 528 

COD (92.5%) and 9 days for ammonium (75.2%) and nitrate (58.4%). 529 

 530 

3.3  Dissolved oxygen  531 

 The oxygen concentration of influent wastewater can range from almost anoxic (0.6 mg l-1) to 532 

almost saturated (7.8 mg l-1) levels (Liu et al., 2016). Complete oxygen depletion in CWs is 533 

nevertheless common when treating high organic or N loaded wastewaters (Albuquerque et al., 534 

2009). The depth of the filtration bed influences DO distribution within CWs. In vertical flow 535 

CWs more than 90% of the oxygen penetrates the system by air diffusion; most of it is 536 

consumed by BOD removal and nitrification processes in the upper zone (Li et al., 2014). 537 

Porous, large grained and loose substrates enhance oxygen transfer into the filtration bed 538 

(Verhoeven and Meuleman 1999). Nevertheless, despite of LECA porosity, low DO 539 

concentrations have been an issue similar to other types of substrates (Mesquita et al., 2013). 540 

The reported values are ranging from 0.5 mg O2 l-1 to 1.5 mg O2 l 1 (Albuquerque et al., 2009; 541 

Lima et al., 2018) which is the minimum DO concentration required for nitrification. Many 542 

studies indicated that shorter hydraulic retention time ranging from hours to a few days can 543 

create favorable conditions for efficient use of oxygen by the microbial biomass. High DO fluxes 544 

may result in weak denitrification (Shuib et al., 2011; Tao et al., 2006; Xiao et al., 2010). Oxygen 545 

transfer into CWs, can be enhanced via vegetation (Li et al., 2014; Vymazal and Kröpfelová 546 

2008) and management of hydraulic conditions in addition to active aeration (Liu et al., 2016; 547 

Ouellet-Plamondon et al., 2006). In LECA based CWs effluent recirculation can improve aeration 548 

conditions and overall purification efficiency (Põldvere et al., 2009) such as BOD removal 549 
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(Zaytsev et al., 2007). Alternatively, batch (drain and fill) feed mode can create more oxygen-550 

rich conditions compared to continuous feed mode, and increase N, P and COD removal (Zhang 551 

et al., 2012). 552 

 553 

3.4  LECA CWs under different climatic conditions 554 

CWs have been operated under a variety of climate conditions (Jenssen et al., 2005; Koottatep 555 

et al., 2005; Quanrud et al., 2004). Cold climate can significantly affect hydraulic performance 556 

and both biological and chemical processes in CWs; microbial activity and vegetation growth 557 

are reduced at low temperatures (Werker et al., 2002). The N removal is reported to be 558 

inhibited below 10 °C (Luo et al., 2005) and nitrification does not occur below 4°C (Cookson et 559 

al., 2002). A decrease in water temperatures from 20 to 5°C was found to decrease the 560 

adsorption capacity of LECA by 24% to 64%, increasing with grain size (Zhu et al., 1997). Design 561 

alternations to improve wetland performance in cold climates include lower hydraulic loading 562 

and both selection of tolerant vegetation and specific substrates (Yan and Xu 2014). LECA has 563 

been extensively used for CWs in cold climate (Brix et al., 2001; Jenssen et al., 2005; Johansson 564 

1997; Mæhlum 1995; Suliman et al., 2006), however in subtropical and semiarid climates i.e 565 

MENA (Middle East and North Africa) region, use of LECA as a substrate in CWs is rather absent 566 

or not addressed in the literature.  567 

 568 

4 Recycling of wetland substrates and environmental concerns 569 

CWs have become an accepted and established technology for the treatment of water. The fate 570 

of the wetlands substrates after saturation is rather vague and poorly addressed in the 571 
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literature (Jenssen and Krogstad 2003; Johansson Westholm 2006). More recently concerns 572 

have been raised about the fate of the substrates after the end of their useful lifetime (Yang et 573 

al., 2018). Substrates upon saturation may contain high concentrations of nutrients, organic 574 

compounds and in some cases, toxic contaminants and pathogens (Hench et al., 2003). Many 575 

studies highlighted the possibility of using spent LECA from CWs as P fertilizer and soil liming 576 

amendment for acidic soils (Jenssen et al., 2010; Johansson Westholm 2006; Vohla et al., 2011) 577 

considering LECA  P adsorption potential which can reach up to 12,000 mg P kg 1  (Ádám et al., 578 

2006; Ádám et al., 2007). However, P saturated LECA may not support short term P release in 579 

soils, including availability to plants. Hylander and Simán (2001) did test different types of 580 

saturated substrates and found that P-saturated LECA resulted in lower crop (barley) yields 581 

compared to crystalline slag substrates. In LECA P was bound tightly to Al and Fe oxides, while 582 

the P in slag was bound to Ca and more readily available to plants. 583 

Production of LECA is known to have a high energy demand (Johansson Westholm 2006), but 584 

actual quantitative information is virtually absent in literature, we only found one website 585 

based reference. This data indicated that amount of energy needed for producing 1 m3 of LECA 586 

was estimated to be 931 MJ, while the CO2 emission potential was 54 kg for the same quantity 587 

(www.leca.com). Therefore LECA is considered a high energy consumption manufactured 588 

substrates, its costs are determined by the production process rather than by the raw materials 589 

(Ballantine and Tanner 2010). Sustainable solutions for recycling and regeneration of LECA are 590 

needed to manage its fate and minimize energy consumption.  591 

 592 
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5 Future research directions 593 

LECA is an adsorptive material that has a high removal capacity for Phosphorus (P) compared to 594 

other types of constructed wetland substrates. Beyond P, interactions of LECA with wastewater 595 

contaminants including organic trace contaminants, certain pathogens, in particular viruses, but 596 

also the nitrogen (N) species ammonium and nitrate need further investigation. Although, N 597 

removal in CWs occurs mainly through biological routes, substrates such as LECA may provide a 598 

buffer capacity, when metabolic processes temporary slowdown. Modification to tailor LECA 599 

for specific use in CW applications for better performance of desired treatment tasks or to 600 

improve biofilm development, including addressing clogging issues has untapped potential. 601 

Such modified properties might be achieved through relatively simple means by crushing 602 

pellets to expose the inner structures or by blending additives into raw clay mixtures. There is 603 

need to develop reuse and recycling strategies for spent CW substrates, including opportunities 604 

for P recovery, while considering potential heavy metals and pathogen loads. The energy 605 

required during LECA production needs to be accounted for when assessing its life cycle in 606 

comparison with alternative substrates. 607 
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Abstract 23 

Light expanded clay aggregates (LECA) have been increasingly used as substrate material 24 

for constructed wetlands given their phosphate removal capacity, mechanical strength, 25 

hydraulic conductivity and their plant rooting and biofilm growth supporting structure. 26 

This review summarizes the current literature on LECA-based constructed wetlands. 27 

Removal performances for main wastewater parameters phosphate, nitrogen species, 28 

suspended solids and oxygen demand are tabulated. Both, physical and biological water 29 
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purification processes in LECA wetlands are discussed. Additional emphasis is on design 30 

and layout of LECA wetlands for different types of wastewater, under different climatic 31 

conditions and to improve treatment performance in general. LECA life cycle 32 

considerations include sourcing, production energy demand, reuse and recycling options 33 

for spent wetland substrates, for example as soil amendment. Research and development 34 

opportunities were identified for structural and compositional LECA modification to obtain 35 

tailored substrates for the use in water treatment and specific treatment tasks. Beyond 36 

traditional wastewater contaminants the fate of a wider range of contaminants, including 37 

organic trace contaminants, needs to be investigated as high Fe, Al and Ca oxides content 38 

of LECA substrates provide adsorptive sites that may facilitate further biological 39 

interactions of compounds that are otherwise hard to degrade.   40 

 41 

Keywords:  Constructed wetlands, LECA, pollutants removal, phosphorous, nitrogen, 42 

adsorption 43 

  44 
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Introduction  45 

Preventing water scarcity, increasing water security and addressing water pollution are 46 

key actions to implement United Nations sustainable development goals (UN, 2015). The 47 

deterioration of water quality, including the decline of natural water resources, due to 48 

agricultural, industrial and domestic human activities is a global issue (Famiglietti, 2014; 49 

Vörösmarty et al., 2010). To maintain water quality and to protect aquatic habitats 50 

polluted water needs treatment before being released into natural water bodies or being 51 

reused. Traditional water treatment strategies employ a combination of physical, chemical 52 

and biological methods and require large investments in both infrastructure and operation 53 

(Goel, 2006; Hendricks, 2016; Sedlak, 2014). Managed natural systems such as 54 

constructed wetlands (CWs) are considered as a viable alternative to conventional 55 

treatment systems. CWs can serve for a wide range of treatment targets and 56 

contaminants at comparable removal efficiency to conventional treatment, while being 57 

less expensive to build, including lower energy demand and maintenance costs (Vymazal, 58 

2010) (Figure 1). CWs are artificial wetlands for wastewater treatment, they consist of a 59 

flow-through substructure, saturated with water and are planted with adaptive vegetation 60 

(Verhoeven and Meuleman, 1999).  61 

Similar to natural wetlands, CWs have been recognized for their multiple roles that 62 

combine environmental and societal benefits, including improving water quality, 63 

increasing water storage buffer capacity during draughts and storm events, restoring 64 

wildlife habitats and providing diverse recreational space within the urban landscape 65 
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(Thorslund et al., 2017). Since the introduction of the concept more than 50 years ago 66 

(Seidel, 1961), the technology has advanced and CWs have been successfully used to treat 67 

an extensive range of domestic, agricultural and industrial wastewater streams under 68 

various climatic conditions (Calheiros et al., 2007; Merlin et al., 2002; Rozema et al., 2016). 69 

CWs have been integral part of progressive ecological urban planning for example in the 70 

-established in decentralised water treatment schemes 71 

for smaller communities and rural settlements (Arheimer et al., 2004; Liu et al., 2017). 72 

There are three major types of CWs (Wu et al., 2015a): free surface water flow CWs, 73 

horizontal subsurface flow CWs and vertical subsurface flow CWs (Figure 2). Free surface 74 

water flow CWs closely replicate the natural cleaning processes occurring in natural 75 

wetlands and have been applied for different types of wastewater including those with 76 

high biological oxygen demand (BOD) and solids content (Ghermandi et al., 2007; 77 

Vymazal, 2013a). 78 

Both horizontal and vertical subsurface CWs are widely used (Luederitz et al., 2001), while 79 

hybrid systems may combine advantages of each type of CW (Vymazal, 2010). CW design 80 

is determined by specific treatment tasks, for example, free water surface CWs, which 81 

typically consist of a shallow basin, are appropriate for water with high solids content such 82 

as mining drainage, storm water and agriculture runoff (Dal Ferro et al., 2018; Niu et al., 83 

2016). Subsurface flow CWs are suitable for water with low solids contents due to the 84 

hydraulic constraints imposed by the substrate (Vymazal and Kröpfelová, 2009). CWs 85 

range from simple, vegetated soil filtration beds to highly diverse multi-hectare systems 86 
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that combine different types of CWs (Dunne et al., 2012; Wu et al., 2015a). The removal 87 

mechanism of pollutants in CWs is achieved through an integrated combination of 88 

biological, physical and chemical interactions among plants, the wetland substrates and 89 

microorganisms (Truu et al., 2009; Vymazal, 2005). For instance, nitrogen (N) removal is 90 

achieved by microbial processes such as ammonification, nitrification, and denitrification 91 

(Vymazal and Kröpfelová, 2009), while physicochemical processes occurring at plant roots 92 

and substrate such as adsorption and sedimentation are the main driver for suspended 93 

solids (Tanner et al., 1995), phosphorous (P) (Arias and Brix, 2005) and heavy metals (Khan 94 

et al., 2009). Plant uptake of nutrients is also considered a major removal mechanism in 95 

CWs (Mesquita et al., 2013). Reduction of microbial pollutants, including pathogens and 96 

parasites, is determined by sedimentation, filtration at roots and substrate, predation and 97 

sunlight inactivation in open water areas (Jasper et al., 2013). 98 

Wetland substrate is a porous particulate packed bed filtration medium that creates the 99 

body of a CW. The substrate occupies the largest proportion of a CW and plays a central 100 

role in the purification process and the stability of the system by providing physical 101 

support for wetlands plants (Wu et al., 2015b). Biofilm forming microbial communities in 102 

CWs are strongly influenced by both the substrate type and its topography (Meng et al., 103 

2014). The substrate supplies adsorption sites for contaminants and many biological and 104 

chemical processes take place within its matrix (Calheiros et al., 2009). Therefore, careful 105 

substrate selection is critical for optimized wetland performance, while price and local 106 

availability have to be taken into consideration (Ballantine and Tanner, 2010). Location 107 
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and depth of the substrate varies with the type of wetland. For vertical flow CWs the 108 

depth of the substrate ranges between 50-60 cm (Prochaska and Zouboulis, 2009). The 109 

top 10-20 cm facilitate aerobic microbial activity and subsequent biodegradation, while 110 

the remaining 40-50 cm of the filtration depth contribute to anaerobic removal of the 111 

chemical oxygen demand (COD) and total nitrogen (TN) as well as phosphorus adsorption 112 

(Tietz et al., 2007). The filtration bed can consist of substrate layers of different granular 113 

sizes that increase towards the bottom drainage layer (Ávila et al., 2015), and may include 114 

an additional organic substrate such as wood mulch ( ) or 115 

biochar (Zhou et al., 2017). In the case of horizontal flow CWs, the effective substrate 116 

depth is between 25-60 cm (Carballeira et al., 2017). Horizontal flow CWs can employ 117 

both mineral and organic substrate materials (Andreo-Martínez et al., 2017), however, the 118 

multilayer substrate composition is less common compared to vertical flow CWs. In free 119 

surface water flow CWs it is common design practice to use 20-30 cm of rooting soil. 120 

However, in this type of wetland the substrate is considered to be of secondary 121 

importance (Vymazal, 2013a). For all types of CWs, small, round, evenly sized grains are 122 

most commonly used to fill the bed and average substrate diameters range from 3 to 32 123 

mm (Tilley, 2014).  124 

Wetland substrates can be divided into natural and manufactured materials, which also 125 

include recycled and industrial by-products (Ballantine and Tanner, 2010; Johansson 126 

Westholm, 2006; Wu et al., 2015a). Natural substrates such as soil, sand, gravel and 127 

marine sediments have been traditionally used as filter materials in CWs. These substrates 128 
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are widely available and require little pre-treatment prior to application (Healy et al., 129 

2007). However, clogging, poor adsorption capacity, low hydraulic conductivity and 130 

accumulation of contaminants such as heavy metals are common problems associated 131 

with these substrates (Johansson Westholm, 2006). More recently, both natural inorganic 132 

minerals such as anthracite, apatite, bauxite, calcite and zeolite (Molle et al., 2011; Seo et 133 

al., 2008; Stefanakis et al., 2009) and organic materials such as biochar, rice straw, peat, 134 

and wood mulch became established as CW substrates (Gupta et al., 2015; Kizito et al., 135 

2015; Xiong and Mahmood, 2010). Recycled materials and by-products from mining, 136 

metal-making, construction, manufacturing and agriculture have also been used as 137 

substrate materials in CWs, not only for their competitive pollutant removal efficiency but 138 

also to reduce waste disposal into the environment (Hu et al., 2012). Recycled materials 139 

include alum sludge, coal and steel slag, fly ash, polyethylene plastic, oyster shells, tire 140 

chips, and construction waste such as bricks (Blanco et al., 2016; Chyan et al., 2013; Shi et 141 

al., 2017; Tatoulis et al., 2017).  Some substrates have been specifically modified to 142 

improve treatment performance, mainly for better P removal (Ballantine and Tanner, 143 

2010; Johansson, 1997) but also for improved ammonium (Zhang et al., 2013) and heavy 144 

metal removal (Lian et al., 2013). 145 

Recent reviews have compared the role of different substrates on the removal of 146 

nutrients, including P removal of both natural and manufactured substrates (Vohla et al., 147 

2011) and summarizing the structural differences and inherent properties of 148 

unconventional substrates such as zeolite, rice husk, alum sludge among many others, and 149 
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their capacity for substantial N and organics removal from wastewater under optimized 150 

operating conditions (Saeed and Sun, 2012). Various substrates have been classified based 151 

on their ion-exchanging, P sorbing and electron donating properties (Yang et al., 2018). In 152 

general, substrates rich in mineral oxides of calcium (Ca), aluminum (Al), and iron (Fe) 153 

such as limestone, biotite, muscovite, steel slag, light weight expanded clays aggregates 154 

(LECA) have high capacities of P and N removal (Johansson Westholm, 2006), while 155 

organic substrates such as rice straw, compost, and wood mulches can be utilized by 156 

microbes as electron donors and thus enhance nitrification and denitrification processes 157 

(Cao et al., 2016). Specific studies have focused on substrates with extensive capacity for P 158 

removal such as clay bricks, fly ash, wollastonite, slag material, bauxite, shale, burnt oil 159 

shale, limestone, zeolite and LECA (Drizo et al., 1999; Johansson Westholm, 2006; Lima et 160 

al., 2018). 161 

This review focusses on suitability of LECA as a substrate in CWs. LECA is a manufactured 162 

substrate made of natural clay or other materials such as shale, apatite material and 163 

industrial by-products. LECA is made by burning the ingredients i.e. clay, at high 164 

temperatures in a rotary kiln. Final products are expanded pellets with many semi-closed 165 

pores that account for up to 90% of the particle volume. These pores are formed as a 166 

result of gas generated from combustion of organic components of the clay and water 167 

evaporation (Arioz et al., 2007). The first use of LECA as CW substrate was reported in  the 168 

early 1990s (Jenssen et al., 1991). Since then, LECA has been extensively investigated as a 169 

substrate for CWs worldwide ( ; Jenssen and Krogstad, 2003; Lima et 170 
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al., 2018; Nurk et al., 2009; Zhu et al., 1997). The increasing use of LECA in CWs has been 171 

attributed to its superior performance to remove P, N, heavy metals and organic 172 

compounds (Murray, 2000; Sposito et al., 1999; Zhou and Keeling, 2013). Based on its raw 173 

materials, LECA consists of minerals such as hydrous aluminum silicates, Fe, Mg and other 174 

alkaline minerals that are critical for binding ions (Bernhardt et al., 2014). For example, 175 

LECA with an estimated surface areas >3 m2 g 1 (Nkansah et al., 2012; Tabase et al., 2013), 176 

pore sizes in the range of 1-5 µm and an estimated porosity of 50-80% provided numerous 177 

sites for adsorption of pollutants (Bogas et al., 2012; Bonabi et al., 2014; Meng et al., 178 

2015; Nawel et al., 2017). LECA has a water absorption capacity between 5-25% (Bogas et 179 

al., 2012; Castro et al., 2011; Nepomuceno et al., 2018) and the cation exchange capacity 180 

of LECA is estimated in the range of 9.5 cmol·kg 1 (Drizo et al., 1999). Coarse grain LECA 181 

enhances hydraulic conductivity while finer LECA with high surface area to volume ratio 182 

allows effective biofilm adhesion and microbial growth which in turn contributes 183 

significantly to biodegradation processes (Albuquerque et al., 2009; ; 184 

Brix et al., 2001).  185 

This review specifically summarizes the current knowledge of LECA application in CWs 186 

design for wastewater treatment and its performance for a broad range of pollutants. The 187 

paper further examines the technical aspects of LECA incorporation into CWs design 188 

solutions with a wider attention to the importance and possibilities of LECA structural 189 

modifications enhancing the removal of different types of pollutants using CW technology. 190 
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Moreover, the review aims to shed light on the environmental concerns of LECA recycling 191 

and energy consumption. 192 

 193 

1. Light Expanded Clay Aggregates (LECA) 194 

 195 

1.1. Production, use and composition 196 

LECA is a subtype of light weight aggregates (LWA), which is a heterogeneous group of 197 

low-density materials used for various civil engineering purposes (198 

2004). LECA is marketed worldwide under commercial trademarks such as Filtralite® 199 

produced in Norway, Danish Leca®, Swedish LECATM, and the German LiaporTM. In the 200 

United States, LECA is produced under Stalite, Gravelite and Go Green commercial 201 

trademarks (Baker et al., 2014). LECA is foremost designed for construction purposes 202 

hence the manufacturing process aims to deliver a product with a strong but low density, 203 

porous, sintered ceramic core, a dense external surface to avoid water adsorption and a 204 

near-spherical shape to improve fresh concrete properties (Cheeseman et al., 2005). The 205 

usage of LECA-like materials for construction purposes is traced back to ancient 206 

civilizations as Sumerians, Greek and Romans (Chandra and Berntsson, 2002). Owing to its 207 

lightweight and thermal properties, LECA is used as component for thermal insulation 208 

concretes (Al-Jabri et al., 2005). The mechanical properties and structural performance of 209 

LECA have been also utilized for modern megastructures and high rise buildings, retaining 210 

walls, backfill of building and bridge supports (Holm and Valsangkar, 1993; Real et al., 211 
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2016). Due to its mechanical properties such as a high strength to weight ratio, its thermal 212 

features, and its good performance as rhizosphere substrate, LECA has been increasingly 213 

applied in storm water management schemes based on urban green infrastructure 214 

including green roofs, green walls, permeable pavements and thermal insulation 215 

concretes (Karami et al., 2018; Molineux et al., 2016; Pradhan et al., 2018; Sailor and 216 

Hagos, 2011; Sengul et al., 2011). 217 

Traditionally, montmorillonite or illite types of clay are used as a raw materials for LECA 218 

production (Nkansah et al., 2012). More recently a wider range of natural and artificial 219 

compounds such as shale, apatite minerals, industrial by-products including coal or solid 220 

waste incineration, fly ash among others, have been integrated with clay to produce 221 

modified LECA (Ayati et al., 2018; Cheeseman et al., 2005; Molle et al., 2011). In addition, 222 

waste materials such as wastewater sludge (González-Corrochano et al., 2009), heavy 223 

metals contaminated soils (Ayati et al., 2018; González-Corrochano et al., 2014), granite 224 

and marble mining residues  have been successfully incorporated into LECA (Moreno-225 

Maroto et al., 2017a). However, mixing additives into LECA raw material is not a common 226 

practice, mostly due to practical constraints which favour the production of homogenous 227 

aggregates made of locally available raw material. Additionally, there is health and 228 

environmental concerns since industrial by-products could contain toxic substances, 229 

particularly heavy metals. 230 

As a raw material, clay is widely available and affordable. Clay contains ample amounts of 231 

mineral oxides such as Fe, Mg, Ca and Al oxides (Grim, 1962). LECA produced from clays is 232 
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manufactured by burning wet-formed granules at high temperatures ranging from 1000-233 

1300 °C in a rotary kiln. In the oven the clay expands rapidly due to gas generating 234 

combustion of organic matter, pore water evaporation, thermal decomposition of 235 

carbonates and ferric oxides (Ayati et al., 2018). Pellet expansion can also be enhanced by 236 

addition of mineral oil which acts as an expansion agent in the process (Fakhfakh et al., 237 

2007; González-Corrochano et al., 2009).  The usage of other combustible additives (e.g. 238 

sawdust and chopped straw) has also been reported to increase the porosity with no 239 

impact on the specific surface area of the pellets (Dabare and Svinka, 2013). Physical 240 

properties of LECA (e.g. strength, density, and expansion behavior) could be further 241 

changed through a mixture of clay and powdered sodium carbonate (Na2CO3), quartz 242 

(SiO2), iron (III) oxide as hematite (Fe2O3), or elemental iron (Fe) (Bernhardt et al., 2014). 243 

Besides the raw materials mineral composition, temperature regime during production 244 

determines the final properties of LECA. An increase in temperature and exposure time of 245 

the clay feed causes higher shrinkage of granules and results in a higher density and lower 246 

porosity, whereas lower temperature and shorter burning time has the opposite effect 247 

(Moreno-Maroto et al., 2017b).  248 

LECA is commercially available in two forms: granular (intact) or crushed (Figure 3). 249 

Geotechnical and construction applications predominantly use the intact specimens, while 250 

crushed LECA is used in hydroponics and water filtration applications (Bahmanpour et al., 251 

2017). The LECA manufacturing process creates a pellet ranging from <1-32 mm with an 252 

average dry bulk density of about 400-600 kg m-³ and a smooth sintered ceramic outer 253 
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shell that encloses the inner honeycomb structure (Ardakani and Yazdani, 2014; Musa et 254 

al., 2016). While LECA was initially designed as a light-weight geotechnical material for 255 

water retention and thermal isolation purposes its manufacturing process has not been 256 

optimized for applications that require a rather porous and sorbent surface as desired for 257 

CWs e.g. for P removal or as a matrix for biofilm growth. However, by crushing LECA 258 

granules, the interior porous structure is exposed to contact. Crushed LECA could have 259 

more than twice the specific surface area (1-10 m2g-1) compared to spherical LECA and a 260 

two times higher cation exchange capacity from 2.40 to 5.27 cmol·kg 1 (Kalhori et al., 261 

2013; Stevik et al., 1999). Therefore, without modifying the manufacture process and raw 262 

material composition, it is possible to significantly improve the effectiveness of LECA 263 

materials by only crushing the granules to unlock their interior surface.  264 

The chemical composition of LECA mainly depends on the mineralogy of its raw clay 265 

material. Clay minerals are hydrous aluminium silicates with Fe, Mg and other alkaline and 266 

earth alkaline metals at variable amounts (Uddin, 2017).  267 

In terms of P removal, high Al content is more preferable than Fe, since Al is not redox-268 

sensitive and is able to retain the adsorption capacity at low redox potential. In CWs, 269 

changes in redox potential could be imposed by the fluctuations of oxygen level resulting 270 

in water level changes or intense microbial activity and anoxic conditions promote Fe3+ 271 

reduction into Fe2+ which subsequently results in release of Fe bound P (Yaghi and 272 

Hartikainen, 2013).  273 
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The XRD analysis of clay materials used for LECA manufacturing typically shows the 274 

presence of quartz, alumina, hematite, and clay minerals. The exact elemental 275 

composition varies greatly as various classes of clays are used for LECA production 276 

including smectites, mica, kaolinite, serpentine, pyrophyllite, vermiculite and sepiolite 277 

(Shichi and Takagi, 2000). Different mineral composition is also accompanied with 278 

different pellet size distribution. During the treatment process, the pellets undergo a 279 

series of chemical changes e.g. decomposition of calcite and dolomite and CO2 release 280 

followed by CaO formation. Therefore, the final product obtained after the firing process 281 

and expansion has a slightly different chemical composition than the raw material, missing 282 

hydrated mineral forms and organic content. LECA composition is generally dominated by 283 

5-6 major constituents; 60-70% SiO2, 15-18% Al2O3, 4-7% Fe2O3, 1-4% MgO, CaO, Na2O, 284 

other constituents contributing less than 1% (Table 4). 285 

 286 

2. Performance of LECA in CWs 287 

2.1. Modified LECA materials  288 

The sorption process in CWs is a finite process, that requires periodic exchange of the 289 

wetland substrate (Arias and Brix, 2005; Drizo et al., 2002). Efforts to extend CW sorption 290 

performance have mainly focused on testing different substrates for better P removal 291 

efficiency. P removal is central task in many treatment scenarios and therefore P is usually 292 

the critical sorbate that determines substrate saturation (Seo et al., 2005; Drizo et al., 293 

2002). Moreover, measurements to manage clogging issues were also addressed in the 294 
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literature including preventative and restorative measures. Preventative measures to 295 

avoid clogging are mostly related to adjustment of hydraulic operation conditions and 296 

application of best management practices, while restorative measures may include 297 

treatment with chemicals or excavation and replacement of clogged substrates (De la 298 

Varga et al., 2013; Knowles et al., 2011; Lianfang et al., 2009; Nivala and Rousseau, 2009; 299 

Pedescoll et al., 2009).  300 

LECA pellets may become either saturated with a sorbate or jammed by the accumulation 301 

of organic matter and sediments on the pellets surfaces which hinders LECA functionality 302 

and reduces its adsorption capacity (Ballantine and Tanner, 2010). Another option to 303 

increase the lifetime of a substrate is to alter its properties or add functionality. Several 304 

studies attempted to improve LECA through changing its specific mineral content or alter 305 

its surface charges via coating or use of additives such as dolomite and lime (Table 1). 306 

Coating LECA with Al and Fe, has a positive effect on LECA capacity for P and As removal 307 

from groundwater (Haque et al., 2008; Yaghi, 2015; Yaghi and Hartikainen, 2018, 2013). In 308 

addition, use of MgO nanoparticles as coating material has increased the LECA surface 309 

area and its adsorption capacity for removal of  pharmaceutical pollutants  (Kalhori et al., 310 

2017).  311 

The photocatalyst titanium dioxide (TiO2) has been investigated as potential LECA coating 312 

for ammonia removal through photo-degradation under solar light (Shavisi et al., 2014; 313 

Zendehzaban et al., 2013) and UV irradiation (Mohammadi et al., 2016). The results of 314 

these studies presented high ammonium removal efficiency with the highest removal 315 
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value (95.2%) achieved under UV radiation. TiO2 sol-gel coating on LECA pellets was 316 

further investigated for antibiotics removal from wastewater, the resulting material was 317 

mechanically stable, had an enhanced adsorption capacity and was photocatalytic active 318 

(Pronina et al., 2015). Sohrabi and Akhlaghian (2016) applied copper-modified TiO2 and 319 

iron-modified TiO2 photocatalysts on LECA, the results indicated that copper modified 320 

LECA showed the best photocatalytic performance using phenol as a model pollutant.  321 

Hydrogen-peroxide (H2O2) and magnesium chloride (MgCl2) modified LECA were 322 

compared with unmodified LECA in their adsorption capacity for fluoride removal. The 323 

adsorption capacity of modified LECA increased roughly 2-3 fold, the achieved values were 324 

8.53 mg g-1, 17.83 mg g-1, and 23.86 mg g-1 for natural LECA, hydrogen peroxide modified 325 

LECA, and magnesium chloride modified LECA, respectively. The results were attributed to 326 

the positive charge of the oxide surfaces that were influenced by increasing pH values and 327 

the formation of fluoride ion complexes e.g. calcium fluoride which increased the ions 328 

adsorbed to LECA surfaces (Sepehr et al., 2014). Mixing of sodium carbonate (Na2CO3), 329 

silicon dioxide (SiO2) and iron oxide (Fe2O3) at 2-10 wt% into the raw material, i.e. clay 330 

powder, was found to increase particle density, porosity and the crushing strength of LECA 331 

(Bernhardt et al., 2014). Lime had a positive effect on P adsorption capacity (Johansson, 332 

1997). Mixing raw materials with fly ash and dolomite were found to enhance P and N 333 

removal capacity, hydraulic conductivity, and porosity ( ; Jenssen and 334 

Krogstad, 2003). Other additives may alter the internal structure of LECA in order to 335 

obtain a more reactive surface. For example, the raw material for LECA can be enriched 336 
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with mineral additives such as quartz sand to improve the particle size distribution and 337 

refine gas release during the expansion process (Fakhfakh et al., 2007).  338 

Few studies have investigated the use of bioaugmentation technology to enhance 339 

denitrification and pollutants removal in LECA based CWs. The studies argued that LECA is 340 

a sterile substrate due to its exposure to high temperature during the manufacturing 341 

phase, and the microbes received by the influent are insufficient to carry on the process 342 

effectively, therefore introducing an already adapted microbial culture to a newly 343 

established CWs could positively influence nutrient removal processes (Nurk et al., 2009; 344 

Zaytsev et al., 2011) and perhaps lead to a faster achievement of treatment goals. Pinto et 345 

al. (2016) found that use of white-rot fungus Lentinula edodes to inoculate LECA and other 346 

substrates including cork; cork and straw and coat pine enhanced pesticide degradation 347 

by almost 50%. Bioaugmentation has been researched for many years for wastewater 348 

treatment application. However, results show that performance is rather difficult to 349 

predict compared to the earlier mentioned chemical and physical modification strategies 350 

(Herrero and Stuckey, 2015). 351 

 352 

2.2. Pollutants removal through adsorption  353 

Naturally occurring clay and clay minerals play important and complex roles in soil 354 

chemistry and its nutrient balance (Bohn et al., 2002). For example, clay minerals are 355 

involved in phosphate fixation (Gérard, 2016), heavy metal binding (Mercier and 356 

Pinnavaia, 1998), nitrate retention and ion-exchange (Mohsenipour et al., 2015). Clays 357 
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also interact with the soil organic matter (Six et al., 2004) and microorganisms (Chenu et 358 

al., 2002). Powdery or granular clay has been widely used as a low-cost locally available 359 

sorbent for water contaminants including, N, P, and heavy metals (Celis et al., 2000; 360 

Mena-Duran et al., 2007), arsenic (Lenoble et al., 2002), fluoride (Karthikeyan et al., 2005) 361 

and biocides (Lezehari et al., 2010).  362 

The adsorption isotherms on clays in general can be described through several isotherm 363 

models. The most widely used models for describing adsorption onto LECA are Langmuir 364 

and  Freundlich  (Vimonses et al., 2009) (Amiri et al., 2011; Dordio and Carvalho, 2013a; 365 

Sharifnia et al., 2016; Zhu et al., 2011). However, the Freundlich isotherm was found to fit 366 

better than the Langmuir isotherm (Sharifnia et al., 2016).  367 

In LECA based CWs, especially in unplanted CWs, adsorption is one of the main routes for 368 

the removal of a wide range of water pollutants (Bahmanpour et al., 2017; 369 

al., 2009; Dordio and Carvalho, 2013a; Dordio et al., 2007; Põldvere et al., 2009).  370 

Adsorption mechanism of oxyanions occurs via anion exchange mechanism and ligand 371 

exchange mechanism (Yaghi and Hartikainen, 2018, 2013). During the anion exchange 372 

mechanism, ions received by the influent are exchanged with similar charged ions bound 373 

to the functional groups contained within a solid matrix i.e. LECA (Yang et al., 2018). In this 374 

type of physical adsorption the bonding consists of a water molecule located between the 375 

anion and the surface of the substrate. However, this electrostatic bonding is considered 376 

rather weak and reversible. On the other hand, ligand exchange mechanism does not 377 

depend on surface charge of the mineral and can occur on positively, negatively as well as 378 
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on neutrally charged surfaces and include formation of multiple bonds (Essington, 2015). 379 

In the ligand exchange mechanism, oxyanions such as phosphate replace aqua groups 380 

(H2O) or hydroxyl groups (OH-) on the Al and Fe bind directly to the 381 

surfaces of these oxides (Penn and Camberato, 2019).  382 

Ligand exchange mechanisms occur preferably under acidic conditions, not only due to 383 

the positive surface charge that is usually formed at low pH, but also because of the 384 

increasing protonation of the OH- groups at the mineral oxide surface, leading to the 385 

formation of aqua groups that swap more readily with oxyanions than OH- groups. Under 386 

alkaline conditions, the mineral oxide surface is negatively charged and occupied OH- ions 387 

with which hinders the adsorption of oxyanions (Yaghi, 2015). 388 

 389 

2.2.1. Nitrogen adsorption 390 

Nitrate and ammonium are adsorbed to clay surfaces via an ion exchange mechanism 391 

(Balci and Dinçel, 2002; Hokkanen et al., 2014). The adsorption rate of nitrate onto the 392 

clay surface is a rather rapid process conditioned by the availability of the anion 393 

exchangers and the saturation of the adsorbate, thus the rate of adsorption may reduce 394 

over time (Mohsenipour et al., 2015). Previous studies emphasized the capacity of clay in 395 

removing N species from wastewater through adsorption processes (Oliveira et al., 2003; 396 

; Witter and Lopez-Real, 1988). Porous materials such as sepiolite, slag, 397 

activated carbon ( ) and zeolite (Zhan et al., 2011), have been 398 

applied for nitrate removal. Many other adsorbents such as activated carbon (Huang et 399 
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al., 2008), agricultural residues (Liu et al., 2010), biochar (Gupta et al., 2015), bentonite 400 

(Angar et al., 2017) were investigated for ammonium removal. High ammonium 401 

adsorption rates occur when the ammonium concentration in the water increases 402 

(Vymazal, 2007). However, ammonium is bound loosely to clay surfaces and can be easily 403 

oxidized to nitrate when exposed to oxygen in case of periodically draining the sorbent 404 

(Kadlec et al., 2017; Sun et al., 2006). Despite promising results for N removal by LECA via 405 

adsorption this mechanism is poorly quantified in literature. Sharifnia et al. (2016) 406 

investigated ammonium adsorption to LECA and found the maximum monolayer coverage 407 

capacity of LECA was 0.255 mg ammonium g-1. The adsorption capacity was highest 408 

between pH 6-7, and equilibrium concentration was reached after 150 min with rapid 409 

adsorption within the first 60 minutes. 410 

 411 

2.2.2. Phosphate adsorption  412 

Phosphate is adsorbed as inner-sphere complex with the oxygen atom of phosphate 413 

bound directly to Al and Fe-oxides at the LECA surface (Kwon and Kubicki, 2004; Zheng et 414 

al., 2012). Inner-sphere complexes are considered strong and mostly irreversible (Yaghi, 415 

2015). The initial Ca, Fe, Al, and Mg concentrations affect the amount of P adsorbed by 416 

LECA surfaces (Baker et al., 2014).  Among these elements, Ca has the strongest 417 

correlation with P-sorption capacity (Zhu et al., 1997). Therefore, low P removal in some 418 

LECA-based CWs (Table 1) can be attributed to the low Ca content of the substrate 419 
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(Johansson, 1997). A positive correlation was found between P removal and the content 420 

of both CaO and Ca in substrates (Vohla et al., 2011).  421 

The pH is a critical parameter that affects the fate of phosphorous in CWs. Higher pH 422 

values have a positive effect on P adsorption and precipitation (Vymazal, 2007). The 423 

highest P adsorption (800 mg kg-1) by LECA was achieved at a highly alkaline pH of 12.3 424 

according to Zhu et al. (1997), while only 72 hours were needed to reach the maximum 425 

adsorption capacity of the substrate. The P adsorption in CWs involves two steps 426 

according to Jenssen and Krogstad (2003). The first step of adsorption can be considered 427 

as a short term transition stage and mostly occurs at low P concentration. This step is 428 

barely affected by the CW operational regime, including the hydraulic rate and the 429 

retention time.  The second sorption step can continue for weeks or months depending on 430 

substrate properties and P concentration. High P concentrations can depress pH and 431 

eventually the precipitation process of P. Jenssen and Krogstad suggested therefore a 432 

retention time of 4 weeks for an optimal P adsorption by LECA under cold climate 433 

conditions.   434 

LECA can have a strong influence on pH values of the water within the CW itself, because 435 

of its high contents of Ca minerals ( ). Põldvere et al. (2009) measured 436 

high pH values in the outflow of a LECA based hybrid CWs monitored for one year with an 437 

average range from 8.1 to 8.8 in the first 9 months and from 7.6 to 7.7 in the remaining 438 

three months. The pH values in LECA beds  can range from 4.0 to 9.5 (Mesquita et al., 439 

2013). Previous studies indicated that an effective P removal in LECA based CWs occurs at 440 
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high pH value ranging from 10 to 12 (Jenssen and Krogstad, 2003; Zhu et al., 1997). 441 

However, highly alkaline conditions can adversely affect the growth of microbial 442 

communities which is important for organic matter and N removal processes (Tietz et al., 443 

2007). 444 

LECA has a finite capacity to adsorb P because of its ceramic matrix resulting from the high 445 

production temperature, which makes it resistant for both mechanical and environmental 446 

changes, therefore it is unlikely that new adsorption sites will emerge or generate in 447 

contrast to soil matrixes (Jenssen and Krogstad, 2003). In addition, poorer than expected 448 

adsorption performance can  be also explained by blocking of  sorption sites due to biofilm 449 

build-up and accumulation of organic matter at the granules surface (Knowles et al., 450 

2011).   451 

LECA systems can retain P through precipitation and sedimentation reactions with Ca-rich 452 

particles. The precipitation mechanism is favored at higher pH values or in presence of 453 

dissolved Ca in wastewater which promote P precipitation as Ca- phosphates  especially 454 

during the initial stages of the treatment process (Jenssen and Krogstad, 2003). However, 455 

as pH values and dissolved oxygen concentrations within body of the CW start to 456 

decrease, further P precipitation is inhibited. Despite the significant contribution of 457 

wetlands sediments to P removal from wastewater, this P sink is often not considered in 458 

LECA based CW (Braskerud, 2002; Mendes et al., 2018).  459 

 460 

2.2.3. Adsorption of heavy metals and organic pollutants  461 
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Clays, in general, have good removal capacity for heavy metals due to their high cation 462 

exchange capacity (Ma and Eggleton, 1999). This gives a good indication that LECA as a 463 

clay-based material can also provide efficient treatment for water contaminated with 464 

heavy metals. LECA has been applied to remove high concentrations of Pb and Cd from 465 

industrial wastewater (Table 3) (Malakootian et al., 2009) as well as Pb and Cu from 466 

mining tailings (Scholz and Xu, 2002). Pharmaceuticals such as MCPA (4-chloro-2-467 

methyphenoxyacetic acid), oxytetracycline, and polyphenol  can be removed by 468 

electrostatic interactions which is partly driven by the extensive protonation of LECA 469 

surface at neutral pH values where these compounds are mostly in the anionic form while 470 

LECA surfaces are positively charged (Dordio and Carvalho, 2013b; Dordio et al., 2007). 471 

The LECA capacity for lipophilic (oxybenzone and triclosan) and hydrophilic compounds 472 

(caffeine) was also investigated. The results revealed higher removal of lipophilic 473 

compounds compared to hydrophilic compounds (Ferreira et al., 2017).  474 

LECA was reported to remove polycyclic aromatic hydrocarbons (PAHS) including 475 

phenanthrene, fluoranthene and pyrene compounds (Nkansah et al., 2012) (Table 3). 476 

The study 477 

hydrophobic character, however, the underlying mechanisms are rather vaguely 478 

understood as factors that provide hydrophobic capacities to LECA are not well addressed 479 

in the existing literature. In addition, LECA made of clays may lack for hydrophobic 480 

characteristics as clays have weak adsorption capacity for hydrophobic compounds 481 
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normally favored by the strong hydration capacity of their inorganic exchangeable ions 482 

(Acikyildiz et al., 2015). 483 

 484 

2.3. Pollutants removal through biological pathways  485 

2.3.1. Biological nitrogen removal  486 

The main biological pathways for N removal in CW involve microbial degradation (Li et al., 487 

2014) and both uptake and assimilation by plants and microorganisms (Wu et al., 2011). 488 

The microbial degradation which takes place under aerobic and anaerobic conditions 489 

comprises three steps: ammonification, nitrification, and denitrification. In the first step, 490 

organic N is converted into ammonia in aerobic and anaerobic zones of the CWs. 491 

Ammonia is removed via the nitrification process under strict aerobic conditions by special 492 

types of nitrifiers such as Nitropira, Nitrosococcus, and Nitrobacter (Mayo and Bigambo, 493 

2005). Denitrification is carried out by heterotrophic microorganisms that need organic 494 

matter to obtain their energy, the microorganisms under anoxic conditions use nitrate as 495 

terminal electron acceptor and organic C as electron donor to produce gaseous N. Each 496 

step of the microbial degradation can be greatly affected by environmental factors such as 497 

oxygen availability, water temperature, pH, organic matter and the presence of the 498 

specific microorganisms (Vymazal, 2007). The nature of the CW substrate is a main factor 499 

determining the location and the activities of the microbial community (Truu et al., 2009). 500 

Previous studies have shown a decline in microbial density in the upper 10 cm of the 501 

substrate when porous materials as sand and gravel were used as filtration bed 502 
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(Braeckevelt et al., 2007; Nurk et al., 2005). The reallocation of the microbial biomass into 503 

greater depths can be explained by the higher availability of organic matter and the 504 

shelter provided on the substrate surfaces and within the micropores between LECA 505 

grains (Calheiros et al., 2009; Tietz et al., 2007). Many studies attributed LECA capacity for 506 

high N removal to its high porosity and large surface area (Saeed and Sun, 2012; Vymazal 507 

and Kröpfelová, 2009; Yang et al., 2018). High porosity allows additional oxygen to 508 

penetrate, especially if LECA is installed as an upper layer. 509 

The selected vegetation plays an important role for wastewater treatment in CW systems, 510 

not only through uptake and assimilation of nutrients but also because the plant roots 511 

provide surface area for biofilm formation and growth, and create aerobic zones that are 512 

important for microbial communities involved in the biological degradation (Allen et al., 513 

2002). Previous studies have shown that ambient oxygen release into the rhizosphere is 514 

supplied by macrophyte plant roots (Brix, 1993; Gagnon et al., 2007; Wu et al., 2001). In 515 

vertical flow CWs, large proportion of the oxygen enters the substrate bed via diffusion, 516 

while in horizontal flow, the oxygen is mostly provided by the plants (Lee et al., 2009; 517 

Molle et al., 2006). Decaying roots provide readily accessible organic matter as additional 518 

carbon source and can remarkably improve denitrification rates and thus improve N 519 

removal in CWs (Lu et al., 2009; Luo et al., 2018). The roots can also provide surface area 520 

for attached microbial growth (Clairmont et al., 2019). Overall, planted LECA beds have 521 

been reported to have higher N removal capacity due to higher microbial diversity and 522 
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density compared to unplanted ones (Almeida et al., 2017; ; Dordio 523 

and Carvalho, 2013a). 524 

 525 

2.3.2. Biological removal of P 526 

P uptake and assimilation by plants are the main biological routes for P removal in CWs 527 

(Kim and Geary, 2001). The largest proportion of soluble P is taken up by microphytes and 528 

algea, especially in the early stages of the growing season. P uptake by plants contributes 529 

to a short term removal mostly during growth (Vymazal, 2007) and if not removed 530 

decaying plants may lead to re-release of P into the wetland. Organic P which enters the 531 

CW as phospholipids, nucleic acids and sugar phosphates is transformed via the microbial 532 

metabolism. The microbial uptake of P is very fast and accounts for a temporary removal 533 

as microorganisms have a very short turnover rate (Qualls and Richardson, 2000). 534 

However, biological take-up of P in LECA based CW systems is not quantified due to the 535 

dominance of P is removal through adsorption.  536 

 537 

2.4. Pathogens removal 538 

CWs have been increasingly adopted for wastewater reuse schemes, therefore pathogen 539 

removal has become a central treatment goal that determines wetland design and 540 

operation (Barbagallo et al., 2010; Masi et al., 2007). Current research targets mostly 541 

common microbial indicators for fecal contamination, such as E. coli, fecal streptococci, C. 542 

perfringens, or Giardia lamblia (Wu et al., 2016). However, other pathogenic 543 
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microorganisms such as Salmonella, polioviruses and Cryptosporidium spp have also been 544 

investigated (Redder et al., 2010; Sidhu et al., 2010). 545 

CWs provide a number of biological, physical and chemical removal mechanisms for 546 

pathogens which mimic processes occurring in natural wetlands (Kadlec and Wallace, 547 

2008). 548 

inactivation is mostly driven by a combination of sedimentation and filtration, adsorption, 549 

predation, photoinactivation, natural die-off as well as biocidal effect of root exudates or 550 

internalization into plant tissue (Alufasi et al., 2017; Boutilier et al., 2009; Wand et al., 551 

2007; Wenk et al., 2019; Wu et al., 2016). The effectiveness of given removal mechanisms 552 

might be enhanced through adequate hydraulic management (Giácoman-Vallejos et al., 553 

2015), presence of specific vegetation (García et al., 2013), the wastewater influent 554 

composition (Yang et al., 2012), seasonal weather patterns (Morató et al., 2014) or 555 

aeration (Headley et al., 2013). Further factors affecting pathogen removal effectiveness 556 

include size and type of substrate media (López et al., 2019). Filter media in CWs 557 

contribute mostly to physiochemical pathogen removal mechanisms such as filtration and 558 

adsorption. Fine granular substrates trap microorganisms and increases their retention 559 

time by enhancing removal through natural-die off (Vacca et al., 2005). Adsorption of 560 

pathogens was found to be particularly effective for substrates with positive surface 561 

charge (Rzhepishevska et al., 2013). Both chemical composition and physical substrate 562 

properties, for example porosity, affect the microbial composition and biofilm growth and 563 

contribute to pathogen predation and adhesion (Long et al., 2016; Meng et al., 2014)..  564 
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However, the link between substrate properties, predation and microbial composition in 565 

CWs is currently not fully understood. Some substrate media, i.e. steel slag, cause pH 566 

variations leading to local and whole system acidification or alkalization which would 567 

impose additional stress on pathogen survival rates, yet this phenomenon is still poorly 568 

studied (Lee et al., 2010; Mayes et al., 2009). CWs for primary and secondary wastewater 569 

treatment operate at average influent E. coli concentrations of 105-108 colony forming 570 

units per 100 mL (cfu/100mL) for domestic wastewater (Headley et al., 2013) and up to 571 

1011 cfu/100mL for fecal coliforms in slaughterhouse wastewater (Rivera et al., 1997). The 572 

typical removal rates of fecal microorganism observed in CWs range from 1-3 log units 573 

(Abou-Elela et al., 2013; Headley et al., 2013; Molleda et al., 2008). Occasionally, removal 574 

above 3 log units was also recorded, both in single stage and  hybrid systems (El-Khateeb 575 

et al., 2009; Pundsack et al., 2001). In terms of water quality standards for water reuse, 576 

the free water surface systems located in tropical or subtropical climates are capable of 577 

producing final effluent with fecal-coliform concentration as low as 100 cfu/100 mL 578 

(Greenway, 2005), while in temperate climates, the effluent could be consistently 579 

maintained around 1000 cfu/100 mL (Vivant et al., 2016). Subsurface flow systems may 580 

achieve effluent concentration below 1000 cfu/100ml, particularly when employed as 581 

tertiary treatment step (Adrados et al., 2018; Andreo-Martínez et al., 2017). Nevertheless, 582 

many CWs exhibit high variability in effluent pathogen concentrations, and further 583 

research is needed to improve design towards a more consistent removal performance 584 

(Jasper et al., 2013; Wenk et al., 2019).  585 
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Due to the coarse granular size (5-20 mm), the water in LECA filtration beds has a 586 

relatively low residence time in comparison with sand beds, therefore bacterial adhesion 587 

mechanisms may not be very effective (Ausland et al., 2002). Similarly, large granular size 588 

also excludes both filtration and straining from being an important removal mechanism in 589 

LECA-dominated systems (Díaz et al., 2010). On the other hand, LECA  porous surface 590 

enhances biofilm growth and subsequent bio-clogging, which facilitates effective bacteria 591 

immobilization (Lianfang et al., 2009). The high cation exchange capacity of LECA could be 592 

also beneficial for bacterial removal since it enhances adhesion (Stevik et al., 1999). 593 

Additionally, clay minerals in LECA, may alter i.e. metabolic pathways of biofilm 594 

microorganisms encapsulating the granule through increase of cell division in E. coli in the 595 

presence of kaolinite (Cuadros, 2017). As a proven soilless plant growing substrate 596 

(Pradhan et al., 2018), LECA may facilitate pathogen removal through root biofilm 597 

attachment (VanKempen-Fryling and Camper, 2017) and possibly plant exudates (Alufasi 598 

et al., 2017). 599 

Consistent E. coli removal of 1.5 log-units was reported for a LECA-based horizontal flow 600 

polishing CWs  after a prior filtration step, and the removal performance was similar to 601 

gravel systems that were operated in parallel (Verlicchi et al., 2009). Removal rates of up 602 

to 3 log for E. coli and total coliforms were reported in horizontal flow LECA CW located in 603 

North Portugal planted with a polyculture of ornamental flowering plants (Calheiros et al., 604 

2015). Paruch (2010) speculated that the integration of LECA-based CW with preceding 605 

septic tanks could completely eliminate the dissemination of human parasitic helminth 606 
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eggs. LECA upflow biofilters designed as unplanted subsurface CW, showed full removal of 607 

somatic coliphages which was attributed to the extensive attraction of negatively charged 608 

viruses onto the positively charged LECA surface (Heistad et al., 2006). Due to the 609 

potential to reuse LECA as soil enhancer in agriculture, sanitation safety issues have been 610 

investigated. E. coli contamination of LECA from a horizontal flow CW-derived LECA 611 

persisted for more than 14 months after the last contact with wastewater (Paruch, 2011). 612 

However, despite the long survival time, E. coli concentrations below 2.5 103 cfu/g of dried 613 

substrate, allowed reuse for agricultural applications according to Norwegian legal 614 

requirements (Paruch et al., 2007). Survival of coliform bacteria on LECA has been further 615 

tested to assess the health hazards related to the use of vertical flow CW in densely 616 

populated areas ( ). When exposed to atmospheric conditions 617 

as a top filtration layer in vertical flow CWs, LECA showed slower inactivation rates of 618 

coliforms (k6h=0.36h-1, k12h=0.25h-1) in comparison to gravel or slag but faster inactivation 619 

compared to organic substrates such as bark and charcoal. 620 

2.5. Organic matter removal 621 

The removal of organic matter i.e. BOD, COD and total suspended solids (TSS) in CWs is 622 

driven by microbial degradation and the retention of these compounds to the substrate 623 

bed (Saeed and Sun, 2012). LECA substrate has a good capacity for organic matter removal 624 

because of high porosity and specific surface areas which allow better biofilm adhesion to 625 

increase the biodegradation (Table 2). In a hybrid LECA CW, almost complete removal of 626 

BOD (99%) was achieved (Põldvere et al., 2009; Zaytsev et al., 2007). A high removal of 627 
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COD (92%) and TSS (80%) was also reported by Dordio and Carvalho (2013a) in CW 628 

mesocosms with more than 60% of the organic matter removed by sedimentation on the 629 

LECA bed. The sedimentation of the organic matter occurs mostly near the CW inlet 630 

(Caselles-Osorio et al., 2007). Organic matter  accumulation is strongly correlated with 631 

organic loading rates (Meng et al., 2015).  632 

The high average removal of both BOD (91%) and TSS (78%) in a vertical flow CW was 633 

attributed to the efficient mineralization of organic matter (Öövel et al., 2007). The 634 

removal of BOD, COD and TSS was found to be affected by the vegetation type and the 635 

creation of aerobic zones within the rhizosphere which positively affected microbial 636 

density and metabolism (Lima et al., 2018). 637 

 638 

3. Design considerations for LECA-based CWs  639 

3.1. Layout of CWs using LECA substrate  640 

In the majority of CW designs the substrate is arranged into horizontal layers (Kadlec and 641 

Wallace, 2008). In larger more heterogeneous treatment wetlands with various sections 642 

or consecutive treatment cells different types of substrate may be used spatially (Lu et al., 643 

2016). Simple design CWs contain a single substrate, that is usually confined by an 644 

impermeable bottom liner (Almeida et al., 2017) such a design is particularly common in 645 

decentralized, rural areas, where CWs serve single households (Figure 4). Multi-layered 646 

wetlands have been constructed with up to three different layers, while double layers are 647 

most common (Vymazal, 2013b). Using double layers in vertical flow may create different 648 



32 
 

oxic conditions as nitrifying bacteria prefer to attach to porous and well aerated media, 649 

whereas denitrifying bacteria colonize more compact aggregates that support low oxygen 650 

conditions ( ). Multilayers can be exclusively composed of LECA 651 

granules of different grain sizes or incorporate different types of substrates (652 

al., 2011; Calheiros et al., 2009). Horizontal positioning of different substrate layers is 653 

variable. LECA has been mostly used as the upper layer when applied with other 654 

substrates to remove suspended solids and promote the growth of nitrifying 655 

microorganisms while providing aeration (Almeida et al., 2017). On the other hand, 656 

installing LECA as a bottom layer substrate has a positive effect on the  hydraulic 657 

conductivity and protects the system against clogging (Suliman et al., 2006). Layer 658 

arrangements uniformity and grain size distribution within each layer are also critical for 659 

adequate hydraulic conditions to minimize clogging issues (Brix et al., 2001). The grain 660 

sizes used in LECA beds can range from smaller 1 mm (powdery form) to 10/20 mm, sizes 661 

of 2/4, 3/8, 4/10 and 13/15 mm have also been installed for different types of CWs (See 662 

table 2). Different depths of LECA layers were tested to compare performance with 663 

thicknesses ranging from 12 cm to 150 cm in lab trials using columns or mesocosms with 664 

narrow volumes e.g. 0.25 m2 (Almeida et al., 2017; ; Nurk et al., 2009; 665 

Özengin, 2016). LECA layer depths ranging from 20-90 cm have been used in a three layer 666 

hybrid CW of an area of 216 m2 for domestic wastewater treatment. For the vertical flow 667 

section of this wetland a layer of 50 cm of coarser granules 10-20 mm was used as bottom 668 

layer covered by 30 cm of finer 2-4 mm granule to ensure oxygen transport. The vertical 669 
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bed was followed by a horizontal subsurface flow filter (90 cm in depth), filled with 2-4 670 

mm LECA granules (Öövel et al., 2007). Põldvere et al. (2009) installed three layers of LECA 671 

with 25 cm, 20 cm and 20 cm thickness of bottom, middle and top layer, respectively, in a 672 

70 cm deep vertical filter, coarser granules of 10 20 mm were used as a bottom layer to 673 

maintain hydraulic conductivity.  674 

 675 

3.2. LECA CWs for different types of wastewater  676 

Constructed wetlands have been used for the treatment of a wide range of different types 677 

of water including domestic, agricultural and industrial sources (Vymazal, 2009). Both 678 

agricultural and industrial wastewater may exhibit high loads of certain contaminants and 679 

contaminant classes, which requires case by case CW design considerations. For example, 680 

dairy farm and aquaculture effluent can be high in COD, proteins, N species and 681 

phosphate (Dauda et al., 2019; Justino et al., 2016; Nagarajan et al., 2019), and 682 

greenhouse effluent is usually high in nitrate (Prystay and Lo, 2001). The composition of 683 

domestic wastewater is usually more similar across different locations (Tran et al., 2015). 684 

Typical values of main wastewater parameters to size CWs were proposed by Kadlec and 685 

Wallace (2008): BOD 220 mg l-1; TSS 500 mg l-1; TN 40 mg l-1; and P 8 mg l-1. 686 

Physiochemical properties of LECA (Figure 5) allow for application in domestic wastewater 687 

treatment with the aim to remove N species, organic matter and P (Albuquerque et al., 688 

2009; Lu et al., 2016; Meng et al., 2015; Özengin, 2016). For this type of wastewater LECA 689 

containing CWs have achieved a maximum reduction of 99% BOD, 94% TSS, 83-99% 690 
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ammonium and 89% P (Table 2). Organic matter removal in LECA based CWs is significant 691 

for all types of wastewater. LECA has shown a relatively good capacity for P removal from 692 

domestic and food processing wastewaters with values ranging from 60% to 67.3% 693 

(Özengin, 2016; Põldvere et al., 2009; Zaytsev et al., 2007). LECA substrate has been also 694 

applied to remove heavy metals from urban runoff and a wide range of industrial 695 

wastewater including mining tailings, tanneries and dye factories (Calheiros et al., 2008; 696 

Malakootian et al., 2009; Scholz and Xu, 2002) and agricultural wastewater include olive 697 

mill effluent and swine wastewater (Dordio and Carvalho, 2013a). Accumulation of organic 698 

matter and clogging at the inlet of CWs is a major challenge for high COD treatment tasks 699 

(Healy et al., 2007; Langergraber et al., 2003). Coarse LECA substrates ranging from 8-10 700 

mm  have been shown to facilitate clogging issues, while smaller sized LECA substrates of 701 

1-4 mm could not prevent clogging efficiently (Albuquerque et al., 2009; Suliman et al., 702 

2006). Pre-dilution of raw wastewater before being introduced to the CW coupled with 703 

using fine particles (2-4 mm) can minimize the clogging problem resulting from the 704 

accumulation of organic matter(Dordio and Carvalho, 2013a).  705 

 706 

3.3.  Hydraulic loading rate and hydraulic retention time 707 

The hydraulic conditions such as retention time and loading rate are vital factors 708 

determining the treatment process in CWs (Ghosh and Gopal, 2010; Jing et al., 2002; 709 

Persson et al., 1999).  The hydraulic loading rate should be balanced with the expected 710 

oxygen depletion along the wetland (Liu et al., 2016). Generally, low hydraulic loading 711 
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rates and increasing hydraulic retention times lead to greater nutrient removal efficiency 712 

(Almeida et al., 2017), whereas organic overloading results in hydraulic dysfunctions via 713 

clogging (Knowles et al., 2011). 714 

The effect of hydraulic loading rate and hydraulic retention time has been investigated in 715 

several LECA beds for P, N and organics removal. Herrmann et al. (2013) found that a 716 

loading rate of 100 L m 2 d 1 increased the average P binding capacity of LECA wastewater 717 

filters to 1.1 g kg 1 at residence times ranging from 5 to 15 min. High removal capacity of P 718 

in LECA beds is attributed to the hydraulic conductivity and the adaptability of LECA to 719 

changing hydraulic loads (Öövel et al., 2007). Effluent recirculation enhances nitrification 720 

processes through increasing both the contact time of wastewater with CW biofilms and 721 

the supply of oxygen and organic matter into the wetland (Saeed and Sun, 2012). Effluent 722 

recirculation has been tested for a hybrid LECA CWs, it was found that  high recirculation 723 

rates of up to 300% in a hybrid CW can increase removal efficiency for BOD, TSS, total N 724 

(Table 2) (Põldvere et al., 2009; Zaytsev et al., 2007). A hydraulic loading rate of 239 ± 7 L 725 

m 2d 1 at a hydraulic retention time of 140 min was found to increase nitrate removal by 726 

maximum 66%, any further increase in hydraulic loading rate was found to have an 727 

opposite result on nitrate removal rate (Almeida et al., 2017). Dordio and Carvalho 728 

(2013a) indicated that LECA adsorption capacity in planted beds was most effective after 6 729 

days for TSS (95.3%), and COD (92.5%) and 9 days for ammonium (75.2%) and nitrate 730 

(58.4%). 731 

 732 
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3.4. Dissolved oxygen  733 

Oxygen supply drives the metabolic processes responsible for BOD/COD removal and 734 

nitrification (Ding et al., 2012). Oxygen transfer rates and horizontal dissolved oxygen (DO) 735 

transport into CWs are determined by the type of wastewater, the wetland depth, the 736 

vegetation and the substrate (Vymazal and Kröpfelová, 2008). In planted CWs oxygen 737 

diffusion and oxygen release by macrophyte roots are the major routes of oxygen 738 

transport (Li et al., 2014; Vymazal and Kröpfelová, 2008). The oxygen concentration of 739 

influent wastewater can range from almost anoxic (0.6 mg l-1) to almost saturated (7.8 mg 740 

l-1) levels (Liu et al., 2016). Complete oxygen depletion in CWs is nevertheless common 741 

when treating high organic or N loaded wastewaters (Albuquerque et al., 2009). The depth 742 

of the filtration bed influences DO distribution within CWs. As depth increases, there is 743 

more volume available for microbial degradation processes ( ., 2004) while 744 

shallow beds have a larger air-water interface allowing better oxygen transfer than deeper 745 

beds (Kadlec et al., 2017). In vertical flow CWs more than 90% of the oxygen penetrates 746 

the system by air diffusion; most of it is consumed by COD removal and nitrification 747 

processes in the upper zone (Li et al., 2014).  748 

Porous, large grained and loose substrates enhance oxygen transfer into the filtration bed 749 

(Verhoeven and Meuleman, 1999), although LECA is a porous substrate, low DO 750 

concentrations have been an issue similar to other types of substrates (Mesquita et al., 751 

2013).  752 



37 
 

The reported values are ranging from 0.5 mg l-1 to 1.5 mg L 1 (Albuquerque et al., 2009; 753 

Lima et al., 2018) which is the minimum DO concentration required for nitrification is. 754 

Many studies indicated that shorter hydraulic retention time ranging from hours to a few 755 

days can create favorable conditions for efficient use of oxygen by the microbial biomass. 756 

High DO fluxes may eliminate the anoxic conditions inside the substrate and result in weak 757 

denitrification (Shuib et al., 2011; Tao et al., 2006; Xiao et al., 2010). Solutions to improve 758 

oxygen transfer into CWs, include optimization of vegetation and hydraulic conditions in 759 

addition to active aeration (Liu et al., 2016; Ouellet-Plamondon et al., 2006). In LECA 760 

based CWs recirculation of the effluent back to the influent can improve aeration 761 

conditions and overall purification efficiency (Põldvere et al., 2009) such as BOD removal 762 

(Zaytsev et al., 2007). Alternatively, batch (drain and fill) feed mode can create more 763 

oxygen-rich conditions compared to continuous feed mode, and increase N, P and COD 764 

removal (Zhang et al., 2012). 765 

 766 

3.5. LECA CWs under different climatic conditions 767 

CWs have been operated under a variety of climate conditions (Jenssen et al., 2005; 768 

Koottatep et al., 2005; Quanrud et al., 2004). Cold climate can significantly affect hydraulic 769 

performance and both biological and chemical processes in CWs; microbial activity and 770 

vegetation growth are reduced at low temperatures (Werker et al., 2002). The N removal 771 

is reported to be inhibited below 10 °C (Luo et al., 2005) and nitrification does not occur 772 

below 4°C (Cookson et al., 2002). A decrease in water temperatures from 20 to 5°C was 773 
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found to decrease the adsorption capacity of LECA by 24 to 64%, increasing with grain size 774 

(Zhu et al., 1997). Several design alternations were implemented to improve wetland 775 

performance in cold climates. Lower hydraulic loading and both selection of tolerant 776 

vegetation and adapted substrates were found to increase the treatment performance 777 

(Yan and Xu, 2014). LECA has been extensively used for CWs in cold climate (Brix et al., 778 

2001; Jenssen et al., 2005; Johansson, 1997; Mæhlum, 1995; Suliman et al., 2006) and in 779 

subtropical climates. The use of CWs in arid and semiarid environments in particular the 780 

Middle East and North Africa (MENA) region, is rather new, despite the need for water 781 

treatment given population growth along with rising wastewater discharge volumes 782 

(Almuktar et al., 2018; Zidan et al., 2015). Wastewater treatment and reuse in the MENA 783 

region are challenged by inadequate technical knowledge as well as financial, logistic, and 784 

cultural constraints (Qadir et al., 2010). 785 

 786 

4. Recycling of wetland substrates and environmental concerns 787 

CWs have become an accepted and established technology for the treatment of water. 788 

More recently concerns have been raised about the fate of the substrates after the end of 789 

their useful lifetime (Yang et al., 2018).  Substrates upon saturation may contain high 790 

concentrations of nutrients, organic compounds and in some cases, toxic contaminants 791 

and pathogens (Hench et al., 2003). The fate of the wetlands substrates after saturation is 792 

rather vague and poorly addressed in the literature (Jenssen and Krogstad, 2003; 793 

Johansson Westholm, 2006). Many studies highlighted the possibility of using spent LECA 794 
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from CWs as P fertilizer and soil liming amendment for acidic soils (Jenssen et al., 2010; 795 

Johansson Westholm, 2006; Vohla et al., 2011) considering LECA  P adsorption potential 796 

which can reach up to 12,000 mg P kg 1 (Ádám et al., 2007; Ádám et al., 2006). However, P 797 

saturated LECA may not support short term P release in soils, including availability to 798 

plants. Hylander and Simán (2001) tested different types of saturated substrates with 799 

barley plants, and found that P-saturated LECA resulted in lower yields compared to 800 

crystalline slag substrates. In LECA P was bound tightly to Al and Fe oxides, while the P in 801 

slag was bound to Ca and was more readily available for the plants. 802 

Production of LECA is known to have a high energy demand (Johansson Westholm, 2006), 803 

but actual quantitative information is virtually absent in literature, we only found one 804 

website based reference. This data indicated that amount of energy needed for producing 805 

1 m3 of LECA was estimated to be 931 MJ, while the CO2 emission potential was 54 kg for 806 

the same quantity (www.leca.com). Therefore LECA is considered a high energy 807 

consumption manufactured substrates, its costs are determined by the production 808 

process rather than by the raw materials (Ballantine and Tanner, 2010). Sustainable 809 

solutions for recycling and regeneration of LECA are needed to manage its fate and 810 

minimize energy consumption.  811 

 812 

5. Future research directions 813 

LECA is an adsorptive material that has a high removal capacity for Phosphorus (P) 814 

compared to other types of constructed wetland substrates. Beyond P, interactions of 815 
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LECA with wastewater contaminants including organic trace contaminants, certain 816 

pathogens, in particular viruses, but also the nitrogen (N) species ammonium and nitrate 817 

need further investigation. Although, N removal in constructed wetlands occurs mainly 818 

through biological routes, substrates such as LECA may provide a buffer capacity, when 819 

metabolic processes temporary slowdown. Modification to tailor LECA for specific use in 820 

constructed wetland applications for better performance of desired treatment tasks or to 821 

improve biofilm development, including addressing clogging issues has untapped 822 

potential. Such modified properties might be achieved through relatively simple means by 823 

crushing pellets to expose the inner structures or by blending additives into raw clay 824 

mixtures. There is need to develop reuse and recycling strategies for spent constructed 825 

wetland substrates, including opportunities for P recovery, while considering potential 826 

heavy metals and pathogen loads. The energy required during LECA production needs to 827 

be accounted for when assessing its life cycle in comparison with alternative substrates.   828 
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Table 3. Removal efficiency for heavy metals and organic contaminants using LECA substrates. 

Contaminant % Removal 
efficiency 

Comments Reference 

Pb 
Cd 
 

93.7 
89.7 

Short contact time ranging from 1 to 2 
hours for Pb and Cd adsorption. 
The removal rate of Cd and Pb gradually 
decreased with increase in contact time. 
Adsorption occurred at pH ranging from 3 
to 10. 
 

Malakootian et al. (2009) 

Pb  
Cu 

96 
87 

The presence of plants had no effect on 
Pb and Cu removal. 
Highest removal capacity observed for 
highly porous media. 

Scholz and Xu (2002) 
 
 

 

Organic contaminants 

Oxytetracycline 
(antibiotic) 

>97 Very high removal efficiency obtained in 
planted beds. 
Short contact time (within 3 days). 
 

Dordio and Carvalho (2013a) 
 
 
 
 
 
 
 
 
 

Polyphenols 
 

80.3 A large proportion was removed after 3 
days of contact time in planted beds. 
 

MCPA (herbicide) 77 High removal obtained in planted beds. 
 

Caffeine (wastewater 
indicator) 
Oxybenzone (sunscreen 
agent) and Triclosan (anti-
bacterial agent)   

19-85 
 
61-97 

High lipophilic compound removal is 
attributed to the presence of LECA. 

Ferreira et al. (2017) 
 
 
 
 
 

Polyaromatic hydrocarbons 
(PAHs):  
Phenanthrene 
Fluoranthene  
Pyrene 

 
 
92 
93 
94 

Suggested LECA as alternative method for 
PAHs removal. 

Nkansah et al. (2012) 
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Table 4 The chemical composition of LECA produced from clay, marine clay, and fabricator sludge. 

Reference Sharifnia et al., 2016 Kalhori et al., 2013 Laursen et al., 2006 

LECA raw material 100% clay 100% clay 90% marine clay+ 10% 
semiconductor production 

sludge 

     a b 
SiO2 61.67 64.83 70.7 69.2 

Al2O3 18.51 15.05 15.3 15.6 

Fe2O3 6.14 7.45 4.5 4.42 

MgO 3.97 3.67 1.02 1.03 

CaO 3.5 2.98 3.8 3.97 

K2O 3.28 2.55 1.39 1.5 

Na2O 1.54 1.1 0.51 0.54 

TiO2 0.65 0.63 0.57 0.6 

SO3 0.23 0.11 1.5 2.22 

P2O5 0.19 0.13 nd 0.026 

SrO 0.13 - 0.026 0.023 

 - - 0.13 0.17 

L.O.I - 1.37 na na 

MnO - 0.13 0.03 0.027 

CuO - - 0.021 0.016 

F - - nd 0.21 

ZnO - - 0.015 0.014 

ZrO2 - - 0.101 0.053 

BaO - -  0.36 0.31 
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Figure 1 Gravel-Steel Slag Horizontal Flow Constructed Wetland used as a polishing step at 

municipal wastewater treatment plant, Devizes, Wiltshire, UK. Effective operation of treatment 

cells (1) is ensured by flow meters (2) synchronized with separated distribution chambers (3).  

(Photo. F. Bydalek) 








